Near-field noise measurements of a high-performance military jet aircraft

2012 ◽  
Vol 60 (4) ◽  
pp. 421-434 ◽  
Author(s):  
Alan T. Wall ◽  
Kent L. Gee ◽  
Michael M. James ◽  
Kevin A. Bradley ◽  
Sally A. McInerny ◽  
...  
1996 ◽  
Vol 309 ◽  
pp. 93-111 ◽  
Author(s):  
Ganesh Raman ◽  
Ray Taghavi

This paper examines a supersonic multi-jet interaction problem that we believe is likely to be important for mixing enhancement and noise reduction in supersonic mixer-ejector nozzles. We demonstrate that it is possible to synchronize the screech instability of four rectangular jets by precisely adjusting the inter-jet spacing. Our experimental data agree with a theory that assumes that the phase-locking of adjacent jets occurs through a coupling at the jet lip. Although synchronization does not change the frequency of the screech tone, its amplitude is augmented. The synchronized multi- jets exhibit higher spreading than the unsynchronized jets, with the single jet spreading the least. We compare the near-field noise of the four jets with synchronized screech to the noise of the sum of four jets operated individually. Our noise measurements reveal that the more rapid mixing of the synchronized multi-jets causes the peak jet noise source to move upstream and to radiate noise at larger angles to the flow direction. Based on our results, we have grounds to believe that screech synchronization is advantageous for noise reduction internal to a mixer-ejector nozzle, since the noise can now be suppressed by a shorter acoustically lined ejector.


Author(s):  
Richard McKinley ◽  
Robert McKinley ◽  
Kent Gee ◽  
Tony Pilan ◽  
Frank Mobley ◽  
...  

Accurate measurement of the noise fields emitted by a full scale high performance jet engine and jet plume (with supersonic jet flow) requires detailed planning and careful execution. The apparent acoustic source can be very large, more than 50 feet long and 20 feet high and wide. The jet plume contains many noise generating sources, the main two being shock (broad band and shock cells) and turbulent mixing. This paper is an initial description of a detailed method to accurately measure and describe the near-field noise while simultaneously measuring the far-field noise. For a large high performance jet engine, the acoustic far-field may not be formed until more than 1000 ft away from the plume. The paper also describes proposed methods to measure the non-linear propagation of the noise from the near-field to the far-field. The proposed methodology described with vetting will be considered as an US military standard (MILSTD) with possible later consideration as American standard measurement technique to describe noise fields for personnel noise exposure and for measuring the performance of jet engine noise reduction technologies.


2021 ◽  
Vol 263 (3) ◽  
pp. 3436-3447
Author(s):  
Dan Lin ◽  
Andrew Eng

Assumptions made on the ground types between sound sources and receivers can significantly impact the accuracy of environmental outdoor noise prediction. A guideline is provided in ISO 9613-2 and the value of ground factor ranges from 0 to 1, depending on the coverage of porous ground. For example, a ground absorption factor of 1 is suggested for grass ground covers. However, it is unclear if the suggested values are validated. The purpose of this study is to determine the sound absorption of different types of ground by measurements. Field noise measurements were made using an omnidirectional loudspeaker and two microphones on three different types of ground in a quiet neighborhood. One microphone was located 3ft from the loudspeaker to record near field sound levels in 1/3 and 1 octave bands every second. The other microphone was located a few hundred feet away to record far field sound in the same fashion as the near field microphone. The types of ground tested were concrete, grass, and grass with trees. Based on the measurement data, it was found that grass and trees absorb high frequency sound well and a ground factor of 1 may be used for 500Hz and up when using ISO 9613-2 methodology. However, at lower frequencies (125 Hz octave band and below), grassy ground reflects sound the same as concrete surfaces. Trees absorb more low frequency sound than grass, but less than ISO 9613-2 suggested.


2022 ◽  
Vol 185 ◽  
pp. 108395
Author(s):  
Yan Wu ◽  
Michael J. Kingan ◽  
Ryan S. McKay ◽  
Sung Tyaek Go ◽  
Young-min Shim

Sign in / Sign up

Export Citation Format

Share Document