Vibroacoustic analysis of a thin laminated composite plate with surface-boned piezoelectric patches and subjected to general boundary conditions

2021 ◽  
Vol 263 (4) ◽  
pp. 2501-2509
Author(s):  
Zhengmin Hu ◽  
Kai Zhou ◽  
Yong Chen

In this paper, a semi-analytical model is proposed to deal with the vibroacoustic problems of laminated composite plates with surfaced-boned piezoelectric patches and subjected to general boundary condition using the modified Fourier series method. Based on Kirchhoff plate theory, the dynamic equation of the laminated composite plate is derived using Hamilton's principle. In order to satisfy general boundary conditions, the displacement solution of the plate is expressed in the form of two-dimensional Fourier series and serval auxiliary functions. The acoustic response of the laminated composite plate due to a harmonic concentrated force is obtained with the Rayleigh integral. Besides, the mass and stiffness contribution of the piezoelectric patch are taken into consideration in the present study. Through enough convergent studies and comparative studies, the convergence, accuracy and universality of the proposed method are validated. The developed semi-analytical model can be used for efficient and accurate analysis and design of laminated composite plates equipped with shunted piezoelectric patches. Finally, the effects of the resistor and inductor shunt damping circuits on the vibration and acoustic response is discussed.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chee Zhou Kam ◽  
Ahmad Beng Hong Kueh

A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.


Author(s):  
M. T. Ahmadian ◽  
T. Pirbodaghi

In this paper, free vibration analysis of laminated composite plates is carried out using first shear deformation theory and finite element method. Effect of axial tension and compression forces on the natural frequencies of the structure is investigated. Applying elastic foundation under the laminated composite plates has enabled us to achieve desired frequencies. The displacements are based C° – nine plate bending element and each node has three degree of freedom. The equations of motion are derived using Hamilton's principle. Results indicate the tension forces will increase the natural frequency while the compression force reduces the natural frequency. The buckling force of plate is computed by increasing the absolute value of compressive force until the natural frequency tends to zero. Dynamic of moving mass in a circular path on the laminated composite plate is also investigated. Displacement of plate center reveals a sinusoidal pattern in time.


Author(s):  
Rajesh Kumar ◽  
Vishal Singh ◽  
SN Patel ◽  
Tanish Dey

This study presents a semi-analytical solution of the non-linear dynamic response, shock spectrum, and dynamic buckling of an imperfect angle-ply laminated composite plate under various types of in-plane pulse forces. The laminated composite plate is modeled using a higher-order shear deformation theory and von-Kármán geometric nonlinearity. The non-linear governing partial differential equations (PDEs) of imperfect laminated composite plates are derived via Hamilton’s principle. Using Galerkin’s method, the non-linear PDEs are transformed into non-linear algebraic equations for the static stability problems and non-linear ordinary differential equations for the dynamic problem such as dynamic response, shock spectrum, and dynamic buckling. The buckling load of the plate is obtained through the associated eigenvalue problem. The static failure load of the composite plate is evaluated using the post-buckling analysis based on the Tsai-Wu failure criterion. The dynamic response and shock spectrum of the composite plate are determined via Newmark’s method. The dynamic failure load of the plate is evaluated using Newmark’s method based on the Tsai-Wu failure criterion. Dynamic buckling is to be characterized by dynamic load factor (DLF), which is represented as the ratio of the dynamic failure load to the static failure load. Based on the pulse/shock duration time, the pulse forces are divided into three loading regimes known as impulsive, dynamic, and quasi-static. The study revealed that the DLF values are > 1, < 1, and [Formula: see text]1 respectively for the case of impulsive, dynamic, and quasi-static loading regimes of pulse force. The influences of various types of in-plane pulse forces, amplitude and time duration of pulse forces, and amplitude of initial geometric imperfections on the non-linear dynamic response, shock spectrum, and dynamic buckling behavior of the laminated composite plate are addressed in detail. The results will help in the appropriate design of the laminated composite plate against dynamic buckling.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850020 ◽  
Author(s):  
Reza Mohamadipoor ◽  
Ehsan Zamani ◽  
Mohammad Hossein Pol

Penetration of flat-ended cylindrical projectiles into thin laminated composite plates was investigated analytically and experimentally. An analytical modeling was carried out for thin laminated composite plates by developing a new function for deflection by computing Von Karman nonlinear strains and by using the principle of energy balance. During the perforation process, different regions were considered for the plate, such as fracture region, elastic deformation region, delamination region, and undeformed region. The energy absorbed by each region was measured in small time intervals. To validate this model, the ballistic experiment is performed on the thin laminated composite plate near and beyond ballistic limit velocity. The samples were made from plain woven glass/epoxy using a hand lay-up method. In addition to the initial velocity, the residual velocity of the projectile was also measured using two parallel laser curtains. A comparison drawn between analytical and experimental results demonstrated a good consistency in the residual velocity of the projectile. Finally, the distribution of strains along the plate thickness direction over time, the different amounts of absorbed energy of the failure modes, delamination radius, and energy are assessed at near and beyond ballistic limit velocity.


2020 ◽  
Vol 978 ◽  
pp. 264-270
Author(s):  
Mihir Kumar Sutar ◽  
Subrat Kumar Behera ◽  
Sarojrani Pattnaik

This paper presents a free vibration analysis of un-damped woven roving laminated composite plate using Classical Laminate Plate Theory (CLPT), for different boundary conditions. The fiber glass/epoxy woven roving laminated composite plates have been prepared using hand layup method. Three different fiber orientations have been considered for the fiber glass/epoxy laminated composite plate, having 50% each percentage by volume of glass and epoxy. Effects of fiber orientation on different mechanical properties such as density, hardness, impact strength and impact strength have been studied. Finite element modeling of the composite plates has been performed using different boundary conditions such as CCCC, CFCF, and CFFF and the fundamental frequencies obtained from the computational modeling have been compared with the available literature.


2016 ◽  
Vol 50 (30) ◽  
pp. 4199-4233 ◽  
Author(s):  
Qingshan Wang ◽  
Dongyan Shi ◽  
Qian Liang ◽  
Fazle Ahad

In this article, the authors presented a unified solution for the dynamic analysis of laminated composite annular, circular, and sector plate with general boundary conditions. The first-order shear deformation theory is employed to formulate the theoretical model. Regardless of the shapes of the plates and the types of boundary conditions, each displacement and rotation component of the elements is expanded as an improved Fourier series expansion which is composed of a double Fourier cosine series and several auxiliary functions introduced to eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries and to accelerate the convergence of series representations. Since the displacement fields are constructed adequately smooth throughout the entire solution domain, an exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the plates. The accuracy, reliability, and versatility of the current solution is fully demonstrated and verified through numerical examples involving plates with various shapes and boundary conditions. Some new results of free vibration analysis for composite laminated annular sector plate, circular sector plate, annular plate, and circular plate are presented, which may be served as benchmark solution for future computational methods. The effects of the sector angles, layer numbers, and boundary spring stiffness on vibration characteristics of the plates are reported. In addition, the force vibration analysis of the plates is also studied. The influence of the boundary spring stiffness, layer number, orthotropic stiffness ration, and fiber orientation angle on dynamic characteristics of the plates is investigated.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
Emin Ergun

The aim of this study is to investigate, experimentally and numerically, the change of critical buckling load in composite plates with different ply numbers, orientation angles, stacking sequences and boundary conditions as a function of temperature. Buckling specimens have been removed from the composite plate with glass-fibre reinforcement at [0°]i and [45°]i (i= number of ply). First, the mechanical properties of the composite material were determined at different temperatures, and after that, buckling experiments were done for those temperatures. Then, numerical solutions were obtained by modelling the specimens used in the experiment in the Ansys10 finite elements package software. The experimental and numerical results are in very good agreement with each other. It was found that the values of the buckling load at [0°] on the composite plates are higher than those of other angles. Besides, symmetrical and anti-symmetrical conditions were examined to see the effect of the stacking sequence on buckling and only numerical solutions were obtained. It is seen that the buckling load reaches the highest value when it is symmetrical in the cross-ply stacking sequence and it is anti-symmetrical in the angle-ply stacking sequence.


Author(s):  
Yu Fu ◽  
Jianjun Yao ◽  
Zhenshuai Wan ◽  
Gang Zhao

In this investigation, the free vibration analysis of laminated composite rectangular plates with general boundary conditions is performed with a modified Fourier series method. Vibration characteristics of the plates have been obtained via an energy function represented in the general coordinates, in which the displacement and rotation in each direction is described as an improved form of double Fourier cosine series and several closed-form auxiliary functions to eliminate any possible jumps and boundary discontinuities. All the expansion coefficients are then treated as the generalized coordinates and determined by Rayleigh-Ritz method. The convergence and reliability of the current method are verified by comparing with the results in the literature and those of Finite Element Analysis. The effects of boundary conditions and geometric parameters on the frequencies are discussed as well. Finally, numerous new results for laminated composite rectangular plates with different geometric parameters are presented for various boundary conditions, which may serve as benchmark solutions for future research.


2020 ◽  
Vol 54 (29) ◽  
pp. 4691-4708
Author(s):  
Aniket Chanda ◽  
Rosalin Sahoo

The analytical solution for static analysis of laminated composite plate integrated with piezoelectric fiber reinforced composite actuator is obtained using a recently developed Trigonometric Zigzag theory. The kinematic field consists of five independent field variables accommodating non-linear variation of transverse shear strains through the thickness of the laminated composite plate. The principle of minimum potential energy is adopted to derive the governing equations of equilibrium. Navier’s solution technique is employed to convert the system of coupled partial differential equations into a system of algebraic equations. The electric potential is assumed to vary linearly through the thickness of the piezoelectric layer. The analytical formulation also does not include voltage as an additional primary variable. The response in the form of deflection and stresses are obtained for smart composite plates subjected to electro-mechanical loads and compared with the elasticity solutions and available results reported by other researchers in the existing literature. The transverse shear stresses are accurately determined by an efficient post-processing technique of integrating the equilibrium equations of elasticity. Parametric studies on actuation in the response of the smart composite plate are also presented graphically in order to have a clear understanding of the static behavior.


Sign in / Sign up

Export Citation Format

Share Document