Reciprocating internal combustion engines. Test code for the measurement of structure-borne noise emitted from high-speed and medium-speed reciprocating internal combustion engines measured at the engine feet

2001 ◽  
1989 ◽  
Vol 111 (3) ◽  
pp. 264-271 ◽  
Author(s):  
K. Nagaya

This paper presents a method for solving the dynamic response problems of a driven valve system and the stress problem of valve springs for internal combustion engines. In this system there is hysteresis behavior in the spring constants during the rotation of the cam shaft. To treat this nonlinearity, the rigidity of each section is assumed to be one of a partly linear spring. For the valve trains, the cam profile is complex in general. To treat a general cam profile, this paper applies a combination method of the Fourier expansion, the Laplace transform and the analytical connection methods, and gives a response of valve trains. This paper also presents a theoretical result for the stresses in the valve spring due to the motion of the valve train based on the three dimensional curved beam theory.


2018 ◽  
Vol 20 (4) ◽  
pp. 393-404 ◽  
Author(s):  
José Galindo ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Daniel Tarí ◽  
Hadi Tartoussi ◽  
...  

Zero-dimensional/one-dimensional computational fluid dynamics codes are used to simulate the performance of complete internal combustion engines. In such codes, the operation of a turbocharger compressor is usually addressed employing its performance map. However, simulation of engine transients may drive the compressor to work at operating conditions outside the region provided by the manufacturer map. Therefore, a method is required to extrapolate the performance map to extended off-design conditions. This work examines several extrapolating methods at the different off-design regions, namely, low-pressure ratio zone, low-speed zone and high-speed zone. The accuracy of the methods is assessed with the aid of compressor extreme off-design measurements. In this way, the best method is selected for each region and the manufacturer map is used in design conditions, resulting in a zonal extrapolating approach aiming to preserve accuracy. The transitions between extrapolated zones are corrected, avoiding discontinuities and instabilities.


2020 ◽  
Vol 0 (1(86)) ◽  
Author(s):  
Сергій Олексійович Дмитрієв ◽  
Олександр Едуардович Хрулєв

Author(s):  
Yue-Yun Wang ◽  
Ibrahim Haskara

Engine exhaust backpressure is a critical parameter in the calculation of the volumetric efficiency and exhaust gas recirculation flow of an internal combustion engine. The backpressure also needs to be controlled to a presetting limit under high speed and load engine operating conditions to avoid damaging a turbocharger. In this paper, a method is developed to estimate exhaust pressure for internal combustion engines equipped with variable geometry turbochargers. The method uses a model-based approach that applies a coordinate transformation to generate a turbine map for the estimation of exhaust pressure. This estimation can substitute for an expensive pressure sensor, thus saving significant cost for production vehicles. On the other hand, for internal combustion engines that have already installed exhaust pressure sensors, this estimation can be used to generate residual signals for model-based diagnostics. Cumulative sum algorithms are applied to residuals based on multiple sensor fusion, and with the help of signal processing, the algorithms are able to detect and isolate critical failure modes of a turbocharger system.


Sign in / Sign up

Export Citation Format

Share Document