Heat exchangers. Forced convection air cooled refrigerant condensers and dry coolers. Sound measurement

2015 ◽  
1986 ◽  
Vol 22 (3) ◽  
pp. 225-239 ◽  
Author(s):  
S. Naik ◽  
S.D. Probert ◽  
M.J. Shilston

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Samuel Gendebien ◽  
Alex Kleiman ◽  
Boris Leizeronok ◽  
Beni Cukurel

Abstract The present research deals with enhancing the thermal performance of turbulated heat exchangers through the application of sound pressure waves at acoustic resonance frequencies. Extending the findings of prior wind tunnel studies, where a standing wave greatly improved the forced convection in reattaching flows, this paper exploits such a phenomenon in a practical heat exchanger setting. The current experiments are conducted in representative turbulated plate and double-pipe heat exchanger geometries, mounted in a dedicated facility. After identifying the inherent acoustic resonance frequencies of the passageways, the impact of excitation is studied in various sound pressure levels, blockage ratios, as well as Strouhal and Reynolds numbers. The acoustic resonance excitation resulted in heat transfer enhancement of 20% and 10% in the plate and double-pipe designs, respectively, absence of additional pressure penalties. To the best knowledge of the authors, this is the first demonstration of acoustic forced convection enhancement in turbulated heat exchanger geometries. Such a technology can pave the way toward future designs that require low-pressure losses, minimal form factor, and/or process controllability.


Author(s):  
S. Gendebien ◽  
A. Kleiman ◽  
B. Leizeronok ◽  
B. Cukurel

Abstract The present research deals with enhancing thermal performance of turbulated heat exchangers through application of sound pressure waves at acoustic resonance frequencies. Extending the findings of prior wind tunnel studies, where a standing wave greatly improved the forced convection in reattaching flows, this paper exploits such a phenomenon in a practical heat exchanger setting. The current experiments are conducted in representative turbulated plate and double pipe heat exchanger geometries, mounted in a dedicated facility. After identifying the inherent acoustic resonance frequencies of the passageways, the impact of excitation is studied in various sound pressure levels, blockage ratios, as well as Strouhal and Reynolds numbers. The acoustic resonance excitation resulted in heat transfer enhancement of 20% and 10% in the plate and double pipe designs respectively, absent of additional pressure penalties. To the best knowledge of the authors, this is the first demonstration of acoustic forced convection enhancement in turbulated heat exchanger geometries. Such a technology can pave the way towards future designs that require low pressure losses, minimal form factor and/or process controllability.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
A. Tamayol ◽  
K. Hooman

Using a thermal resistance approach, forced convection heat transfer through metal foam heat exchangers is studied theoretically. The complex microstructure of metal foams is modeled as a matrix of interconnected solid ligaments forming simple cubic arrays of cylinders. The geometrical parameters are evaluated from existing correlations in the literature with the exception of ligament diameter which is calculated from a compact relationship offered in the present study. The proposed, simple but accurate, thermal resistance model considers: the conduction inside the solid ligaments, the interfacial convection heat transfer, and convection heat transfer to (or from) the solid bounding walls. The present model makes it possible to conduct a parametric study. Based on the generated results, it is observed that the heat transfer rate from the heated plate has a direct relationship with the foam pore per inch (PPI) and solidity. Furthermore, it is noted that increasing the height of the metal foam layer augments the overall heat transfer rate; however, the increment is not linear. Results obtained from the proposed model were successfully compared with experimental data found in the literature for rectangular and tubular metal foam heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document