Fertilizers. Extraction of water soluble micro-nutrients in fertilizers and removal of organic compounds from fertilizer extracts

2018 ◽  
Tellus B ◽  
2011 ◽  
Vol 63 (5) ◽  
Author(s):  
Puja Khare ◽  
B. P. Baruah ◽  
P. G. Rao

1995 ◽  
Vol 60 (9) ◽  
pp. 1448-1456 ◽  
Author(s):  
Ivo Šafařík ◽  
Miroslava Šafaříková ◽  
Vlasta Buřičová

Magnetic composite based on poly(oxy-2,6-dimethyl-1,4-phenylene) (PODMP) was prepared by melting the polymer with ε-caprolactam in a presence of fine magnetite particles. Magnetic PODMP was used for sorption of water soluble organic compounds (dyes belonging to triphenylmethane, heteropolycyclic and azo dye groups) from water solutions. There were considerable differences in the binding of the dyes tested. In general, heteropolycyclic dyes exhibited the lowest sorption.


2021 ◽  
pp. 118757
Author(s):  
Štěpán Horník ◽  
Jan Sýkora ◽  
Petra Pokorná ◽  
Petr Vodička ◽  
Jaroslav Schwarz ◽  
...  

2002 ◽  
Vol 36 (11) ◽  
pp. 1827-1832 ◽  
Author(s):  
S. Decesari ◽  
M.C. Facchini ◽  
E. Matta ◽  
M. Mircea ◽  
S. Fuzzi ◽  
...  

2021 ◽  
Author(s):  
Juanjuan Qin ◽  
Jihua Tan ◽  
Xueming Zhou ◽  
Yanrong Yang ◽  
Yuanyuan Qin ◽  
...  

Abstract. Water-soluble organic compounds (WSOC) are essential in atmospheric particle formation, migration, and transformation processes. Size-segregated atmospheric particles were collected in a rural area of Beijing. Excitation-emission matrix (EEM) fluorescence spectroscopy was used to investigate the sources and optical properties of WSOC. Sophisticated data analysis on EEM data was performed to characteristically estimate the underlying connections among aerosol particles in different sizes. The WSOC concentrations and average fluorescence intensity (AFI) showed monomodal distribution in winter and bimodal distribution in summer, with dominant mode between 0.26 to 0.44 µm for both seasons. The EEM spectra of size-segregated WSOC were different among variant particle sizes, which could be the results of changing sources and/or chemical transformation of organics. Size distributions of fluorescence regional intensity (region Ⅲ and Ⅴ) and HIX indicate that humification degree or aromaticity of WSOC was highest between 0.26 to 0.44 µm. The Stokes shift (SS) and the harmonic mean of the excitation and emission wavelengths (WH) reflected that π-conjugated systems were high between 0.26 to 0.44 µm as well. The parallel factor analysis (PARAFAC) results showed that humic-like substances were abundant in fine particles (< 1 µm) and peaked at 0.26–0.44 µm. All evidence supported that the humification degree of WSOC increased in submicron mode (< 0.44 µm) and decreased gradually. Thus, it was conjectured that condensation of organics still goes on in submicron mode, resulting in the highest humification degree exhibit in particle size between 0.26 to 0.44 µm rather than < 0.26 µm. Synthetically analyzing 3-dimensional fluorescence data could efficiently present the secondary transformation processes of WSOC.


Talanta ◽  
2018 ◽  
Vol 189 ◽  
pp. 31-38 ◽  
Author(s):  
Laura Blanco-Zubiaguirre ◽  
Asier Cabezas ◽  
Jose Antonio Carrero ◽  
Luis Ángel Fernández ◽  
Maitane Olivares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document