Mixed-mode SPE followed by GC-MS analysis to determine water soluble organic compounds in aerosol and historical mortars affected by marine atmosphere: The case of Punta Begoña Galleries (Getxo, North of Spain)

Talanta ◽  
2018 ◽  
Vol 189 ◽  
pp. 31-38 ◽  
Author(s):  
Laura Blanco-Zubiaguirre ◽  
Asier Cabezas ◽  
Jose Antonio Carrero ◽  
Luis Ángel Fernández ◽  
Maitane Olivares ◽  
...  
2010 ◽  
Vol 10 (7) ◽  
pp. 17467-17490
Author(s):  
G. Wang ◽  
K. Kawamura ◽  
M. Xie ◽  
S. Hu ◽  
B. Zhou ◽  
...  

Abstract. Primary (i.e., sugars and sugar alcohols) and secondary water-soluble organic compounds (WSOCs) (i.e., dicarboxylic acids and aromatic acids) were characterised on a molecular level in size-segregated aerosols from the urban and mountain atmosphere of China and from the marine atmosphere in the outflow region of East Asia. Levoglucosan is the most abundant WSOCs in the urban and mountain atmosphere, whose accumulated concentrations in all stages are 1–3 orders of magnitude higher than those of marine aerosols. In contrast, malic, succinic and phthalic acids are dominant in the marine aerosols, which are 3–6 times more abundant than levoglucosan. This suggests that a continuous formation of secondary organic aerosols is occurring in the marine atmosphere during the long-range transport of air mass from inland China to the North Pacific. Sugars and sugar-alcohols, except for levoglucosan, gave a bimodal size distribution in the urban and mountain areas, peaking at 0.7–1.1 μm and >3.3 μm, and a unimodal distribution in the marine region, peaking at >3.3 μm. In contrast, levoglucosan and all the secondary WSOCs, except for benzoic and azelaic acids, showed a unimodal size distribution with a peak at 0.7–1.1 μm. Geometric mean diameters (GMDs) of the WSOCs in fine particles (<2.1 μm) at the urban site are larger in winter than in spring, due to an enhanced coagulation effect under the development of an inversion layer. However, GMDs of levoglucosan and most of the secondary WSOCs in the coarse mode are larger in the mountain and marine air and smaller in the urban air. This is most likely caused by an enhanced hygroscopic growth due to the high humidity of the mountain and marine atmosphere.


Tellus B ◽  
2011 ◽  
Vol 63 (5) ◽  
Author(s):  
Puja Khare ◽  
B. P. Baruah ◽  
P. G. Rao

1995 ◽  
Vol 60 (9) ◽  
pp. 1448-1456 ◽  
Author(s):  
Ivo Šafařík ◽  
Miroslava Šafaříková ◽  
Vlasta Buřičová

Magnetic composite based on poly(oxy-2,6-dimethyl-1,4-phenylene) (PODMP) was prepared by melting the polymer with ε-caprolactam in a presence of fine magnetite particles. Magnetic PODMP was used for sorption of water soluble organic compounds (dyes belonging to triphenylmethane, heteropolycyclic and azo dye groups) from water solutions. There were considerable differences in the binding of the dyes tested. In general, heteropolycyclic dyes exhibited the lowest sorption.


2021 ◽  
pp. 118757
Author(s):  
Štěpán Horník ◽  
Jan Sýkora ◽  
Petra Pokorná ◽  
Petr Vodička ◽  
Jaroslav Schwarz ◽  
...  

2002 ◽  
Vol 36 (11) ◽  
pp. 1827-1832 ◽  
Author(s):  
S. Decesari ◽  
M.C. Facchini ◽  
E. Matta ◽  
M. Mircea ◽  
S. Fuzzi ◽  
...  

2014 ◽  
Vol 11 (7) ◽  
pp. 11361-11389 ◽  
Author(s):  
K. Violaki ◽  
J. Sciare ◽  
J. Williams ◽  
A. R. Baker ◽  
M. Martino ◽  
...  

Abstract. To obtain a comprehensive picture on the spatial distribution of water soluble organic nitrogen (WSON) in marine aerosols, samples were collected during research cruises in the tropical and south Atlantic Ocean and during a one year period (2005) over the southern Indian Ocean (Amsterdam island). Samples have been analyzed for both organic and inorganic forms of nitrogen and the factors controlling their levels have been examined. Fine mode WSON was found to play a significant role in the remote marine atmosphere with enhanced biogenic activity, with concentrations of WSON (11.3 ± 3.3 nmol N m–3) accounting for about 84% of the total dissolved nitrogen (TDN). Such levels are similar to those observed in the polluted marine atmosphere of the eastern Mediterranean (11.6 ± 14.0 nmol N m–3). Anthropogenic activities were found to be an important source of atmospheric WSON as evidenced by the ten times higher levels in the Northern Hemisphere (NH) than in the remote Southern Hemisphere (SH). Furthermore, the higher contribution of WSON to TDN (40%) in the SH, compared to the NH (20%), underlines the important role of organic nitrogen in remote marine areas. Finally, Sahara dust was also identified as a significant source of WSON in the coarse mode aerosols of the NH.


2021 ◽  
Author(s):  
Juanjuan Qin ◽  
Jihua Tan ◽  
Xueming Zhou ◽  
Yanrong Yang ◽  
Yuanyuan Qin ◽  
...  

Abstract. Water-soluble organic compounds (WSOC) are essential in atmospheric particle formation, migration, and transformation processes. Size-segregated atmospheric particles were collected in a rural area of Beijing. Excitation-emission matrix (EEM) fluorescence spectroscopy was used to investigate the sources and optical properties of WSOC. Sophisticated data analysis on EEM data was performed to characteristically estimate the underlying connections among aerosol particles in different sizes. The WSOC concentrations and average fluorescence intensity (AFI) showed monomodal distribution in winter and bimodal distribution in summer, with dominant mode between 0.26 to 0.44 µm for both seasons. The EEM spectra of size-segregated WSOC were different among variant particle sizes, which could be the results of changing sources and/or chemical transformation of organics. Size distributions of fluorescence regional intensity (region Ⅲ and Ⅴ) and HIX indicate that humification degree or aromaticity of WSOC was highest between 0.26 to 0.44 µm. The Stokes shift (SS) and the harmonic mean of the excitation and emission wavelengths (WH) reflected that π-conjugated systems were high between 0.26 to 0.44 µm as well. The parallel factor analysis (PARAFAC) results showed that humic-like substances were abundant in fine particles (< 1 µm) and peaked at 0.26–0.44 µm. All evidence supported that the humification degree of WSOC increased in submicron mode (< 0.44 µm) and decreased gradually. Thus, it was conjectured that condensation of organics still goes on in submicron mode, resulting in the highest humification degree exhibit in particle size between 0.26 to 0.44 µm rather than < 0.26 µm. Synthetically analyzing 3-dimensional fluorescence data could efficiently present the secondary transformation processes of WSOC.


Sign in / Sign up

Export Citation Format

Share Document