scholarly journals NUMERICAL DESIGN OF FRAME BUILDINGS TAKING INTO ACCOUNT THE GENERALIZED STIFFNESS AND LOAD OF SOIL AND FOUNDATION

Author(s):  
E. Kuzhahmetova

The article is devoted to the improvement of methods for calculating buildings as large finite element systems and implements approaches that provide a definition of the overall picture of the stress - strain state of a designed building (structure) in parts, including its structural units and a pile foundation. The article contains a description of the methodology, the essence of which is to bring the stiffness of the pile foundation in the form of single piles (for example, under the columns of a frame of a public, residential or industrial building) and the adjacent soil mass, to the supporting points of interaction of the piles with the building. Generalized stiffness coefficients of the pile, obtained taking into account the soil with different deformation characteristics, are entered into the general matrix of the building for the subsequent determination of its stress - strain state and stability. At the final stage of moving the reference points of the building, it is possible to calculate the characteristics of the stress - strain state of the pile in the ground. In this article (part 1), the generalized stiffness coefficients of the pile are obtained taking into account the types of soil (sand and clay) with physical and mechanical characteristics selected from regulatory documents. The calculations are performed using the FEMAP with NX NASTRAN software package. The material on the structuring of the building model is supposed to be published in the subsequent parts of this article

2022 ◽  
Vol 906 ◽  
pp. 93-98
Author(s):  
Tigran Dadayan ◽  
Lusine Karapetyan

Currently, the main type of connection between a steel column and a reinforced concrete foundation is a steel base, which is often economically unprofitable due to its size, number or diameter of anchor bolts. Not only in Armenia, but also in most countries, a steel base is the main type of connection between a steel column and a reinforced concrete foundation. The usage of other types of connections is associated with both new calculation methods and technological problems. The possibility of computation and design of the connection of a steel column with a reinforced concrete foundation in seismically active regions using shear studs is considered in this work, a reinforced concrete section with longitudinal reinforcement is used for this type of connection which ensures a smooth transfer of forces from the column to the foundation. Based on the example of the connection of a single-story industrial building column shows the change in the stress-strain state of the connection under axial force and bending moments for seismic regions. Not only the feature and construction technology of the connection considered in the work, but also proposes a calculation method with future possibility of its subsequent inclusion in the building codes of the Republic of Armenia.


Author(s):  
Sergey B. Kosytsyn ◽  
Vladimir Y. Akulich

The distinctive work is aimed at the geotechnical forecast of the influence of the construction of the tunnel on the change in the stress-strain state of the surrounding soil mass, namely, the precipitations that arise on the surface of the earth. The work assumes both a numerical and an analytical solution with subsequent com-parative analysis


Author(s):  
Elvira R. Kuzhakhmetova

Relevance. The underground part of the building (foundation and soil) has a significant impact on its stress-strain state and behavior under the influence of operational loads. Therefore, the existing regulatory and technical documentation regulates the design of buildings (structures), taking into account the joint work of their aboveground and underground parts. In practice, such accounting becomes possible on the basis of a comprehensive engineering analysis of the building as a large mechanical system building - foundation - soil, which today can be carried out using the finite element method. In the case of pile foundations, the correctness of the result depends largely on the reasonable choice of the design model of the pile-soil subsystem. The article analyzes three design models of piles operating in an array of soil foundation. The first model is discrete. In it, the pile is modeled by bars and is based on elastic supports (Spring) with generalized stiffnesses. Second model - spatial, in which the pile and soil are typed in by volumetric elements (Solid). Third model - spatial-bar or combined, in which the bar pile is embedded in the mesh of the soil mass using a rigid substructure formed by bars of high rigidity. The aim of the work - to determine a rational calculation model of the pile - soil subsystem, which allows, on the one hand, to reduce the general order of the system of resolving equations, and, on the other hand, to maintain the accuracy of the assessment of the stress-strain state of the calculation model of pile - soil and the building as a whole. Materials and methods. The numerical results of the analysis of the pile foundation statics using the three pile - soil calculation models were performed in the CAE software package - the Femap with NX Nastran class, which implements the finite element method. Results. Comparative-numerical analysis of the stress-strain state of the pile foundation - soil subsystem made it possible to determine the advantages, disadvantages, and also the areas of rational use of bar, spatial combined calculation models. In the next articles, it is planned to consider the calculation of piles for vertical loads, as well as a comparative analysis of numerical results with experimental data (in the labo-ratory or in field conditions) for horizontal and vertical effects.


Author(s):  
S. V. Yushchube ◽  
I. I. Podshivalov

The object of the study is a pile-raft foundation or mat foundation 180 cm thick of a 25-storey building made of a reinforced concrete frame. When constructing a pile foundation, some of piles are not completely sank down to the reference points. In this connection, it is necessary to identify the reasons and load-bearing capacity of piles, given the soil compaction between piles and under their tips and the possibility of using such piles for further building construction.After studying the materials of soil investigation, the analysis of occurrence, composition, physical-mechanical properties of soils, and the pile field, the stress-strain state model is developed for the pile-raft foundation using the MicroFe software application with the development of design model for the foundation-base-building system.In the compacted soil state between the piles and under the pile tips, the conditions of the ultimate and service limit states are met at the actual depth of pile sinking for the raft foundation. 


Author(s):  
O. I. DUBINCHYK ◽  
L. O. NEDUZHA

Purpose. Bridge supports with a high pile caps require more attention when calculating their strength due to the difficult operating conditions of the piles. The purpose of the scientific article is to substantiate the stress-strain state of the pile foundation of the bridge structure using software computing systems SCAD and LIRA-CAD. Methodology. An analysis of software used to automate the design of foundations was conducted. The main parameters of SCAD and LIRA-CAD software packages are yielded. With their help, finite-element models of the pile foundation of the bridge support with a high pile cap were built. The developed models maximally reflect the properties of the soil base and foundation, its pile cap and piles, geometric characteristics and the influence of the finite elements meshing is considered. Calculations were performed in SCAD and LIRA-CAD software packages with monitoring of the calculation process. Findings. During the numerical analysis of the pile foundation of the bridge structure with a high pile cap, vertical displacements, force factors (normal forces and bending moments) in the piles and stresses in the body of the support and piles were determined. Based on these results, an analysis was performed, which is combined with a comparison of the obtained results. Implementation of SCAD and LIRA-CAD software allows to significantly reduce design time, to reduce project costs, to improve the quality and efficiency of investments. Originality. A comparison of the stress-strain state obtained during the numerical analysis of SCAD and LIRA-CAD software, which proved the difference in the approach to modeling in these complexes, was conducted. Practical value. The results of substantiation of the stress-strain state of the pile foundation with the use of software complexes made it possible to verify the design solution of all elements of the foundation of the bridge structure with a high pile cap.


2017 ◽  
Vol 106 ◽  
pp. 02011 ◽  
Author(s):  
Maxim Stepanov ◽  
Roman Melnikov ◽  
Juriy Zazulya ◽  
Oleg Ashihmin

2021 ◽  
Vol 8 ◽  
pp. 93-98
Author(s):  
O.N. Shemelina ◽  
V.P. Ovchinnikov ◽  
Y.N. Pavelyeva ◽  
S.S. Shemelin

The article presents the definition of problems in the well support from external local sealing loads. The conditions of local sealing loads are identified. The calculations were carried out according to the equations. A model of the stress-strain state in the well support has been created. The parameters of the effect of compression on the absolute value of strength are determined.


Sign in / Sign up

Export Citation Format

Share Document