La loi et la carte : deux outils de gestion du risque d'incendie dans les forêts méditerranéennes (The law and the map : two management tools of fire hazard in the mediterranean forests)

2005 ◽  
Vol 82 (1) ◽  
pp. 75-84
Author(s):  
Vincent Clément ◽  
Marielle Jappiot
Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1302
Author(s):  
Jordi Bartolomé ◽  
Jordi Miró ◽  
Xavier Panadès ◽  
Maria José Broncano ◽  
Josefina Plaixats ◽  
...  

During the second half of the 20th century, European countries experienced an increase in their forest area due to the global change. Consequently, there has been an increase in large forest fires, mainly in the Mediterranean basin, and this has forced the development of several types of prevention programs. One of them is the control of the understory by livestock. In this sense, browsing with a combination of donkeys and goats could be a good option, as both animals usually feed on forest species. However, little is known about their preferences for the key species of the Mediterranean forest. Using a cafeteria test, the preferences and consumption of both animals have been determined for five typical species of the Mediterranean forest, such as Quercus ilex, Pinus halepensis, Phillyrea latifolia, Rubus ulmifolius, and Brachypodium retusum. Results showed that donkeys and goats could act complementarily in the reduction of the fuel biomass of forests. Donkeys appear to act more on fine fuel, such as B. retusum, and goats on the more pyrophyte species, in this case P. halepensis. In addition, given that donkeys are at severe risk of extinction in Europe, this role of providing ecosystem services could contribute to their conservation. Despite this study only showing that goats and donkeys would consume all five presented plant species and that there are some differences in consumption during a short-term test, it constitutes a useful first step for conservation and fire prevention in the Mediterranean forests.


2021 ◽  
Author(s):  
Adrián García Bruzón ◽  
Patricia Arrogante Funes ◽  
Laura Muñoz Moral

<p>The climate change has turned out to be a determining factor in the development of forest in Spain. Production systems have emitted polluting gases and other particles into the atmosphere, for which some plants have not yet developed adaptation systems. Among the most harmful pollutants for the environment are gases such as nitrous oxides, ozone, particulate matter.</p><p>However, this condition is not the same in Peninsular Spain, and the Balearic Islands since the plant compositions differ in the territory and the bioclimatic, topographic, and anthropic characteristics. Monitoring the vegetation with sufficient spatial and temporal resolution, studying variables conditioning plant health is a challenge from the nature of the variables and the amount of data to be handled. </p><p>The Mediterranean forest is one of the most ecosystem affected by climate change because of usually experimented long periods of drought that, in combination with increased temperatures, can drastically reduce the photosynthetic activity of trees and therefore the biomass of forests.</p><p>That is why the application of environmental technologies based on Remote Sensing (which provide plant health indices from passive sensors on satellite platforms and other variables of interest), Geographic Information Systems (to integrate, process, analyze spatial and temporal data) and machine learning models (which facilitate the extraction of relationships between variables, conditioning factors and predict patterns). </p><p>In this regard, this work's objective is to evaluate the possible effect that different pollutants have on the health of the vegetation, measured from the annual values of the Normalized Difference Vegetation Index (NDVI), in the Mediterranean forests of Peninsular Spain. To achieve this, we are used machine learning techniques using the Random Forest algorithm. The study has also been done with various climatic, topographic, and anthropic variables that characterize the forest to carry it out. </p><p>The results showed that certain variables such as the aridity index had generated the NDVI values and therefore plant development, while others are limiting factors such as the concentration of certain pollutants and the direct relationship between them particulates and NOx. This study can verify how the Random Forest algorithm offers reliable results, even when working with heterogeneous variables. </p>


Author(s):  
Alex Baumel ◽  
Gonzalo Nieto Feliner ◽  
Frederic Medail ◽  
Stefano La Malfa ◽  
Mario Diguardo ◽  
...  

Intense research efforts on phylogeography over the last two decades uncovered major biogeographical trends and renewed our understandings of plant domestication in the Mediterranean. We aim to investigate the evolutionary history and the origin of domestication of the carob tree that has been cultivated for millennia for food and fodder. We used >1000 microsatellite genotypes to identify carob evolutionary units (CEUs) based on genetic diversity structure and geography. We investigated genome-wide diversity and evolutionary patterns of the CEUs with 3557 SNPs generated by restriction-site associated DNA sequencing (RADseq). The 56 populations sampled across the Mediterranean basin, classified as natural, semi-natural or cultivated, were examined. Although, RADseq data are consistent with previous studies identifying a strong West-to-East genetic structure and considerable admixture in some geographic parts, we reconstructed a new phylogeographic scenario with two migration routes occurring from a single refugium likely located in South-Western Morocco. Our results do not favour the regionally bound or single origin of domestication. Indeed, our findings support a cultivation model of locally selected wild genotypes, albeit punctuated by long-distance westward dispersals of domesticated varieties by humans, concomitant with major cultural waves by Romans and Arabs in the regions of dispersal. Ex-situ efforts to preserve carob genetic resources should prioritize accessions from both western and eastern populations, with emphasis on the most differentiated CEUs situated in South-Western Morocco, South Spain and Eastern Mediterranean. Our study underscores the relevance of natural and seminatural habitats of Mediterranean forests and their refugia in the conservation efforts of tree crops.


2017 ◽  
Vol 28 (4) ◽  
pp. 651-671 ◽  
Author(s):  
Laura Cancellieri ◽  
Giulia Caneva ◽  
Maurizio Cutini

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 590 ◽  
Author(s):  
Chiraz Belhadj-Khedher ◽  
Taoufik El-Melki ◽  
Florent Mouillot

With hot and dry summers, the Mediterranean basin is affected by recurrent fires. While drought is the major driver of the seasonal and inter-annual fire distribution in its northern and mildest climate conditions, some extreme fire events are also linked to extreme winds or heat waves. The southern part of the Mediterranean basin is located at the driest range of the Mediterranean bioclimate and is influenced by Saharan atmospheric circulations, leading to extreme hot and dry episodes, called Sirocco, and potentially acting as a major contributor to fire hazard. The recently created fire database for Tunisia was used to investigate the ±10-day pre- and post-fire timeframe of daily weather conditions associated with fire events over the 1985–2006 period. Positive anomalies in minimum and maximum temperatures, negative anomalies in air relative humidity, and a preferential south-eastern wind during fire events were identified, which were characteristic of Sirocco winds. +7 °C anomalies in air temperature and −30% in relative air humidity were the critical thresholds for the most extreme fire conditions. In addition, meteorological anomalies started two days before fire events and lasted for three days after for large fires >400 ha, which suggests that the duration of the Sirocco event is linked with fire duration and final fire size. Lastly, the yearly number of intense Sirocco events better explained the inter-annual variability of burned area over the 1950–2006 period than summer drought based on Standardized Precipitation Evaporation Index (SPEI) indices.


2020 ◽  
Author(s):  
Tamir Klein

<p>The Mediterranean basin is a mosaic of human and natural landscapes, many of which are important forests and woodlands. Among global biomes, it has been under the longest anthropogenic stress, and today, in addition to the ongoing warming, it experiences drying. In my talk I will give examples from new research on the impacts of these processes on Mediterranean forests, as well as opportunities for increasing their sustainability under intensifying change.</p><p>Aleppo pine is perhaps the single most important forest tree species for the region, and has been grown for decades in common garden plots of provenances from around the region. Forest scientists from Spain, Italy, Greece and Israel, teamed up to synthesize the results of these provenance trials. Together, we produced the temperature and precipitation growth sensitivity profiles for Aleppo pine. Next, these profiles were applied on future climate maps, to show the potential expansion of this key species northward, as well as its extinction in many southern locations. In a seven decades-long tree mortality study across Israel, this mortality pattern is already occurring, driven by hotter and longer drought periods.</p><p>My current research is focused on finding new avenues to ensure the long-term existence of forests and trees in the Mediterranean. Examples include: (1) Mixed forests, with native broadleaf and conifer species coexisting, have high resilience, thanks to interspecific niche partitioning; (2) Native fruit trees have higher drought resistance than their cultivated relatives, and should be protected and integrated into local agriculture; (3) Native savannah trees from the southern fringes of the region are becoming more important, and offer new resilience strategies; and (4) Variations among Aleppo pine ecotypes give hope for the future suitability of this species across the Mediterranean.</p>


2005 ◽  
Vol 81 (3) ◽  
pp. 365-368 ◽  
Author(s):  
Morris C Johnson ◽  
David L Peterson

For many years silviculture and fire management have mostly been separate forestry disciplines with disparate objectives and activities. However, in order to accomplish complex and multiple management objectives related to forest structure, fuels, and fire disturbance, these two disciplines must be effectively integrated in science and practice. We have linked scientific and management tools to develop an analytical approach that allows resource managers to quantify and evaluate the effectiveness of alternative fuel treatments in dry interior forests of western North America. The principal tool is the Fire and Fuels Extension of the Forest Vegetation Simulator (FFE-FVS) for characterizing fuel succession and fire behaviour, and for quantifying and visualizing stand structure. FFE-FVS provides a user-friendly framework that facilitates rapid evaluation of thinning and surface fuel treatments intended to reduce crown fire potential and fireline intensity. This approach quantifies fire hazard at small and large spatial scales, assists with treatment priorities and schedules, and generates stand and landscape visualizations that facilitate decisions about appropriate fuel treatments. Key words: fire behaviour, fire hazard, fuel treatments, silviculture


Sign in / Sign up

Export Citation Format

Share Document