scholarly journals Saharan Hot and Dry Sirocco Winds Drive Extreme Fire Events in Mediterranean Tunisia (North Africa)

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 590 ◽  
Author(s):  
Chiraz Belhadj-Khedher ◽  
Taoufik El-Melki ◽  
Florent Mouillot

With hot and dry summers, the Mediterranean basin is affected by recurrent fires. While drought is the major driver of the seasonal and inter-annual fire distribution in its northern and mildest climate conditions, some extreme fire events are also linked to extreme winds or heat waves. The southern part of the Mediterranean basin is located at the driest range of the Mediterranean bioclimate and is influenced by Saharan atmospheric circulations, leading to extreme hot and dry episodes, called Sirocco, and potentially acting as a major contributor to fire hazard. The recently created fire database for Tunisia was used to investigate the ±10-day pre- and post-fire timeframe of daily weather conditions associated with fire events over the 1985–2006 period. Positive anomalies in minimum and maximum temperatures, negative anomalies in air relative humidity, and a preferential south-eastern wind during fire events were identified, which were characteristic of Sirocco winds. +7 °C anomalies in air temperature and −30% in relative air humidity were the critical thresholds for the most extreme fire conditions. In addition, meteorological anomalies started two days before fire events and lasted for three days after for large fires >400 ha, which suggests that the duration of the Sirocco event is linked with fire duration and final fire size. Lastly, the yearly number of intense Sirocco events better explained the inter-annual variability of burned area over the 1950–2006 period than summer drought based on Standardized Precipitation Evaporation Index (SPEI) indices.

Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Haim Kutiel

The Mediterranean Basin is among the densest populated regions of the world with forecasts for a further population increase in the coming decades. Agriculture and tourism are two main economic activities of this region. Both activities depend highly on climate and weather conditions. Climate and weather in turn, present a large variability both in space and in time which results in different uncertainty types. Any change in weather and or climate conditions in the coming decades due to climate change may increase this uncertainty. Temporal uncertainty is discussed in detail and different ways of how to exhibit it are presented with examples from various locations in the Mediterranean basin. Forecasted increased uncertainty may in turn increase future challenges for long term planning and managing of agriculture and tourism in that part of the world.


2015 ◽  
Vol 45 (11-12) ◽  
pp. 3381-3401 ◽  
Author(s):  
Sinan Şahin ◽  
Murat Türkeş ◽  
Sheng-Hung Wang ◽  
David Hannah ◽  
Warren Eastwood

2016 ◽  
Vol 136 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Javier Madrigal ◽  
Irma Fernández-Migueláñez ◽  
Carmen Hernando ◽  
Mercedes Guijarro ◽  
Daniel J. Vega-Nieva ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7336 ◽  
Author(s):  
Richard M. Cowling ◽  
Caryl Logie ◽  
Joan Brady ◽  
Margie Middleton ◽  
B. Adriaan Grobler

In Mediterranean-Climate Ecosystems (MCEs), Holocene coastal dunes comprise small, fragmented and dynamic features which have nutritionally imbalanced and excessively drained, droughty, sandy soils. These characteristics, along with summer drought and salt-laden winds, pose many challenges for plant colonization and persistence. Consequently, MCE dune floras are likely to be distinctive with a high proportion of habitat specialists and strong convergence in growth form mixes. Very little research has compared the species traits of dune floras within and across MCEs. This paper contributes to filling that gap. Here, we analyze the taxonomic, biological and geographical traits for all 402 species in a flora from a dune landscape (Cape St Francis) in the southeastern Cape Floristic Region (CFR) and compare patterns with the trait profiles of other dune floras at a regional (CFR) and global (MCE) scale. Within the CFR, the southeastern (all-year-rainfall) flora at Cape St Francis had a similar trait profile to western (winter-rainfall) dune floras, except for having a lower representation of species belonging to CFR-endemic clades, and higher number of species associated with tropical lineages. The St Francis flora, in common with other CFR and MCE floras, was dominated by members of the Asteraceae, Fabaceae and Poaceae. Some 40% of the St Francis flora was endemic to the CFR, typical of the high rate of MCE-level endemism elsewhere in the CFR, and in other MCEs. About 30% of the flora was confined to calcareous sand, a value typical for many other MCE sites. The St Francis flora, as well as other CFR dune floras, differs from those of other MCEs by having many species associated with shrubby lineages, and by the relatively high incidence of species associated with tropical lineages. The growth form profile of the St Francis and other CFR floras shows strongest similarity with that of Australian MCE dunes in that in both regions, evergreen hemicryptophytes and shrubs share dominance, and annuals are floristically and ecologically subordinate. The least similar of MCEs to the St Francis trait profile is the Mediterranean Basin where annuals are the most frequent growth form while shrubs are subordinate. California and Chile dune floras appear to occupy an intermediate position, in terms of growth form mix, between the Cape and Australia on the one hand, where dune floras have retained features typical of nutrient-poor soils, and the Mediterranean Basin, where dwarf, deciduous shrubs and annuals dominate the life form spectrum. All MCE dunes are threatened by alien plants, infrastructure development, tourism demands and rising sea levels. The high incidence of species of conservation concern in CFR dune floras underestimates the exponentially increasing threats to their habitats, which are already historically at a much-reduced extent. All remaining coastal dune habitat in the CFR, and probably in other MCEs, should be conserved in their entirety.


Author(s):  
Francisco Lloret ◽  
Josep Piñol

Fire is currently recognized as one of the major natural hazards of the Mediterranean basin. In an average year the total burnt area in the whole basin is around 600,000 hectares, the product of approximately 50,000 fires. The estimated annual cost is around 775 million Euros (FAO 2001). Official data on casualties due to fires are often not available, but, for example, seventy-nine people have been killed directly by fire in Portugal since 1966 and fifty in Catalonia (northeast Spain) since 1970. Fire is commonly considered to be a key component of the dynamics of Mediterranean ecosystems (Chapters 7 and 23). Long dry periods, usually in summer, and vegetation assemblages that produce large amounts of standing branches and debris, are the main factors promoting the propagation of fires. These characteristics are common to other regions of the world with a similar climate and vegetation structure including California, central Chile, South Africa, and south-western Australia. Fire is a common occurrence and a significant natural hazard in all these regions. Although initially a natural phenomenon, during the course of the Holocene human activity has become an increasingly powerful driver of fires (Chapter 9). Prevention of wildfires is now one of the top priorities of the forestry and environmental agencies across the Mediterranean region because of the huge extent of the burned surface area, the high expenditure on both fire prevention and fire fighting, and the impacts in terms of both human life and property. The development of models to investigate the relative roles of extreme weather conditions and fire suppression policies in the generation of large fires is a key area of research (Piñol et al. 2007). The pattern of fire occurrence is not uniform across the Mediterranean basin and orders of magnitude differences appear. When standardized to the forested area of each country, the average burnt area exceeds 103 ha per 103 km2 per year in Greece, Israel, Italy, Algeria, Portugal, and Spain. This means that, on average, more than 1 per cent of the forested area is burnt in these countries each year.


2019 ◽  
Vol 12 (10) ◽  
pp. 1630-1643 ◽  
Author(s):  
Djamel Tahir ◽  
Bernard Davoust ◽  
Philippe Parola

Vector-borne diseases (VBDs) are among the leading causes of morbidity and mortality in humans and animals. The scale of VBDs is increasing worldwide, including in the Mediterranean Basin, a region exposed to climate changes. Indeed, weather conditions may influence the abundance and distribution of vectors. The vector-borne nematode diseases of dogs and cats, such as dirofilariosis, onchocercosis, thelaziosis, Cercopithifilaria, and Acanthocheilonema infections, are some of these vectorized diseases, several of which are zoonoses. They are all caused by parasitic nematodes transmitted by arthropods, including mosquitoes (Dirofilaria spp.), black flies (Onchocerca lupi), drosophilids (Thelazia callipaeda), ticks (Acanthocheilonema dracunculoides and Cercopithifilaria bainae), and fleas and lice (Acanthocheilonema reconditum). The control and prevention of these infections and diseases require a multidisciplinary approach based on strengthening collaboration between the different actors in the fields of health, research, sociology, economics, governments and citizens, to improve human, animal, and ecosystem health. This is the concept of "one health." The review aimed to provide a general update on the spatial and temporal distribution of vector-borne nematodes diseases affecting companion animals and humans, as well as the vectors involved in the Mediterranean area. Simultaneously, certain epidemiological parameters, diagnosis, treatment, and control of these diseases based on the "one health" concept will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document