Modifications récentes des apports biodétritiques littoraux : conséquences sur le budget sédimentaire des estrans sableux de l'ouest du Massif Armoricain / Recent changes in coastal biodetritic sediment supply: impacts on the sediment budgets of sandy shores in the western Armorican Massif

2001 ◽  
Vol 7 (1) ◽  
pp. 17-29
Author(s):  
Alain Hénaff ◽  
Jean-Claude Bodéré
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jonathan A. Warrick ◽  
Andrew W. Stevens ◽  
Ian M. Miller ◽  
Shawn R. Harrison ◽  
Andrew C. Ritchie ◽  
...  

Abstract Coastal erosion outpaces land generation along many of the world’s deltas and a significant percentage of shorelines, and human-caused alterations to coastal sediment budgets can be important drivers of this erosion. For sediment-starved and erosion-prone coasts, large-scale enhancement of sediment supply may be an important, but poorly understood, management option. Here we provide new topographic measurements that show patterns and trends of beach accretion following the restoration of sediment supply from a massive dam removal project. River sediment was initially deposited in intertidal-to-subtidal deltaic lobes, and this sediment was reworked by ocean waves into subaerial river mouth bars over time scales of several months. These river mouth bars welded to the shoreline and then initiated waves of sediment accretion along adjacent upcoast and downcoast beaches. Although the downcoast shoreline has a high wave-angle setting, the sedimentation waves straightened the downcoast shoreline rather than forming self-organized quasi-periodic instabilities, which suggests that simple coastal evolution theory did not hold under these conditions. Combined with other mega-nourishment projects, these findings provide new understanding of littoral responses to the restoration of sediment supplies.


2016 ◽  
Vol 4 (2) ◽  
pp. 489-513 ◽  
Author(s):  
Alexandre Loye ◽  
Michel Jaboyedoff ◽  
Joshua Isaac Theule ◽  
Frédéric Liébault

Abstract. Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter–early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope–channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.


Geology ◽  
2021 ◽  
Author(s):  
G.R. Sharman ◽  
J.A. Covault ◽  
D.F. Stockli ◽  
Z.T. Sickmann ◽  
M.A. Malkowski ◽  
...  

Coastal erosion, including sea-cliff retreat, represents both an important component of some sediment budgets and a significant threat to coastal communities in the face of rising sea level. Despite the importance of predicting future rates of coastal erosion, few prehistoric constraints exist on the relative importance of sediment supplied by coastal erosion versus rivers with respect to past sea-level change. We used detrital zircon U-Pb geochronology as a provenance tracer of river and deep-sea fan deposits from the Southern California Borderland (United States) to estimate relative sediment contributions from rivers and coastal erosion from late Pleistocene to present. Mixture modeling of submarine canyon and fan samples indicates that detrital zircon was dominantly (55%–86%) supplied from coastal erosion during latest Pleistocene (ca. 13 ka) sea-level rise, with lesser contributions from rivers, on the basis of unique U-Pb age modes relative to local Peninsular Ranges bedrock sources. However, sediment that was deposited when sea level was stable at its highest and lowest points since the Last Glacial Maximum was dominantly supplied by rivers, suggesting decreased coastal erosion during periods of sea-level stability. We find that relative sediment supply from coastal erosion is strongly dependent on climate state, corroborating predictions of enhanced coastal erosion during future sea-level rise.


2017 ◽  
Author(s):  
David J. Topping ◽  
◽  
Ronald E. Griffiths ◽  
David J. Dean ◽  
Paul E. Grams ◽  
...  

2017 ◽  
Author(s):  
Kathryn Grace De Rego ◽  
◽  
Brett Eaton ◽  
J. Wesley Lauer ◽  
Marwan Hassan

Sign in / Sign up

Export Citation Format

Share Document