scholarly journals Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

2016 ◽  
Vol 4 (2) ◽  
pp. 489-513 ◽  
Author(s):  
Alexandre Loye ◽  
Michel Jaboyedoff ◽  
Joshua Isaac Theule ◽  
Frédéric Liébault

Abstract. Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter–early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope–channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

2016 ◽  
Author(s):  
A. Loye ◽  
M. Jaboyedoff ◽  
J. I. Theule ◽  
F. Liébault

Abstract. Debris flows have been recognized to be linked to amounts of material temporary stored in torrent channels. Consequently, sediment production, debris supply and storage changes from low-order channels of the Manival catchment (French Alps) were surveyed periodically during 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which happened twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during winter–early spring season, following power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge from spring to autumn. Both debris flows originate in channels exclusively, but their occurrence is linked to recharge from previous debris pulses coming from the hillside and from bedload transport. Headwater debris sources display an equivocal behaviour in sediment transfer: despite of rainstorms inducing debris flows in torrent, low geomorphic activity occurred in production zone. Still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting no exhaustion of debris storages. The seasonal cycle of sediment yield seems therefore to depend not only on debris supply and runoff (flow capacity), but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that a monitoring of torrent in-channel storage changes coupled to debris supply can readily improve knowledge on recharge threshold leading to debris flow, so their prediction.


2017 ◽  
Vol 17 (11) ◽  
pp. 1923-1938 ◽  
Author(s):  
Fumitoshi Imaizumi ◽  
Yuichi S. Hayakawa ◽  
Norifumi Hotta ◽  
Haruka Tsunetaka ◽  
Okihiro Ohsaka ◽  
...  

Abstract. Debris flows usually occur in steep mountain channels and can be extremely hazardous as a result of their destructive power, long travel distance, and high velocity. However, their characteristics in the initiation zones, which could possibly be affected by temporal changes in the accumulation conditions of the storage (i.e., channel gradient and volume of storage) associated with sediment supply from hillslopes and the evacuation of sediment by debris flows, are poorly understood. Thus, we studied the relationship between the flow characteristics and the accumulation conditions of the storage in an initiation zone of debris flow at the Ohya landslide body in Japan using a variety of methods, including a physical analysis, a periodical terrestrial laser scanning (TLS) survey, and field monitoring. Our study clarified that both partly and fully saturated debris flows are important hydrogeomorphic processes in the initiation zones of debris flow because of the steep terrain. The predominant type of flow varied temporally and was affected by the volume of storage and rainfall patterns. Fully saturated flow dominated when the total volume of storage was  <  10 000 m3, while partly saturated flow dominated when the total volume of the storage was  >  15 000 m3. Debris flows form channel topography which reflects the predominant flow types during debris-flow events. Partly saturated debris flow tended to form steeper channel sections (22.2–37.3°), while fully saturated debris flow tended to form gentler channel sections ( <  22.2°). Such relationship between the flow type and the channel gradient could be explained by a simple analysis of the static force at the bottom of the sediment mass.


2017 ◽  
Author(s):  
Fumitoshi Imaizumi ◽  
Yuichi S. Hayakawa ◽  
Norifumi Hotta ◽  
Haruka Tsunetaka ◽  
Okihiro Ohsaka ◽  
...  

Abstract. Debris flows often occur in steep mountain channels, and can be extremely hazardous as a result of their destructive power, long travel distance, and high velocity. However, their characteristics in the initiation zones, which could possibly be affected by temporal changes in the channel topography associated with sediment supply from hillslopes and the evacuation of sediment by debris flows, are poorly understood. Thus, we studied the interaction between the flow characteristics and the topography in an initiation zone of debris flow at the Ohya landslide body in Japan using a variety of methods, including a physical analysis, a periodical terrestrial laser scanning (TLS) survey, and field monitoring. Our study clarified that both partly and fully saturated debris flows are important hydrogeomorphic processes in the initiation zones of debris flow because of the steep terrain. The predominant type of flow varied temporally and was affected by the volume of storage and rainfall patterns. The small-scale channel gradient (on the order of meters) formed by debris flows differed between the predominant flow types during debris flow events. The relationship between flow type and the slope gradient could be explained by a simple analysis of the static force at the bottom of the sediment mass.


Author(s):  
Marisa C. Palucis ◽  
Thomas P. Ulizio ◽  
Michael P. Lamb

Steep, rocky landscapes often produce large sediment yields and debris flows following wildfire. Debris flows can initiate from landsliding or rilling in soil-mantled portions of the landscape, but there have been few direct observations of debris flow initiation in steep, rocky portions of the landscape that lack a thick, continuous soil mantle. We monitored a steep, first-order catchment that burned in the San Gabriel Mountains, California, USA. Following fire, but prior to rainfall, much of the hillslope soil mantle was removed by dry ravel, exposing bedrock and depositing ∼0.5 m of sandy sediment in the channel network. During a one-year recurrence rainstorm, debris flows initiated in the channel network, evacuating the accumulated dry ravel and underlying cobble bed, and scouring the channel to bedrock. The channel abuts a plowed terrace, which allowed a complete sediment budget, confirming that ∼95% of sediment deposited in a debris flow fan matched that evacuated from the channel, with a minor rainfall-driven hillslope contribution. Subsequent larger storms produced debris flows in higher-order channels but not in the first-order channel because of a sediment supply limitation. These observations are consistent with a model for post-fire ravel routing in steep, rocky landscapes where sediment was sourced by incineration of vegetation dams—following ∼30 years of hillslope soil production since the last fire—and transported downslope by dry processes, leading to a hillslope sediment-supply limitation and infilling of low-order channels with relatively fine sediment. Our observations of debris flow initiation are consistent with failure of the channel bed alluvium due to grain size reduction from dry ravel deposits that allowed high Shields numbers and mass failure even for moderate intensity rainstorms.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 169 ◽  
Author(s):  
Ming-liang Chen ◽  
Xing-nian Liu ◽  
Xie-kang Wang ◽  
Tao Zhao ◽  
Jia-wen Zhou

On 8 August 2017, a runoff-generated debris flow occurred in the Puge County, Sichuan Province of southwestern China and caused huge property damage and casualties (25 people died and 5 people were injured). Emergency field investigations found that paddy fields, dry land, residential buildings and roads suffered different degrees of impact from the debris flow. This paper reveals the formation process of the debris flow by analyzing the characteristics of rainfall precipitation and sediment supply conditions in the study area and it approaches the practical application of hazard prevention and mitigation constructions. Doppler weather radar analysis indicates that a very high intensity rainfall occurred in the middle and upper zones of the basin, illustrating the importance of enhancing rainfall monitoring in high-altitude areas. The abundant supply of deposits in gully channels is among the significant causes of a transformation from mountain floods to large-scale debris flows. It was also found that the two culverts played an important role in the movement affecting the processes of debris flows which has substantially aggravated the destructive outcome. The excessive supply of solid material and local blockage with outburst along a gully must receive significant attention for the prediction of future debris flows, hazard prevention and mitigation measures.


2021 ◽  
Vol 27 (1) ◽  
pp. 73-85
Author(s):  
Paul M. Santi ◽  
Blaire Macaulay

ABSTRACT This work explores two hypotheses related to runoff-related post-wildfire debris flows: 1) their initiation is limited by rainstorm intensity rather than cumulative rainfall depths and 2) they are not sediment supply limited. The first hypothesis suggests that it is common to generate more than enough rainfall to account for the volume of water in the debris flow, but to actually produce a debris flow, the water must be delivered with sufficient intensity. This is demonstrated by data from 44 debris flows from eight burned areas in California, Colorado, and Utah. Assuming a debris flow comprises 30 percent water and 70 percent solids, these events were generated during rainstorms that produced an average of 17 times as much water as necessary to develop a debris flow. Even accounting for infiltration, the rainstorms still generated an overabundance of water. Intensity dependence is also shown by numerous cases in which the exact timing of debris flows can be pinpointed and is contemporaneous with high-intensity bursts of rainfall. The hypothesis is also supported by rainfall intensity-duration thresholds where high-volume storms without high-intensity bursts do not generate debris flows. The second hypothesis of sediment-supply independence for the initiation of debris flows is supported by a significant increase in flow volume occurring directly after wildfire, compared to flows in unburned terrain. Also, repeated flows within short time intervals are only possible with an abundance of channel sediment, dry ravel, and bank failure material that can be mobilized. Field observations confirm these sediment sources, even directly after a debris-flow.


Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 189-193 ◽  
Author(s):  
Roman A. DiBiase ◽  
Michael P. Lamb

Abstract Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapes with more-frequent fires.


2012 ◽  
Vol 12 (3) ◽  
pp. 731-749 ◽  
Author(s):  
J. I. Theule ◽  
F. Liébault ◽  
A. Loye ◽  
D. Laigle ◽  
M. Jaboyedoff

Abstract. Steep mountain catchments typically experience large sediment pulses from hillslopes which are stored in headwater channels and remobilized by debris-flows or bedload transport. Event-based sediment budget monitoring in the active Manival debris-flow torrent in the French Alps during a two-year period gave insights into the catchment-scale sediment routing during moderate rainfall intensities which occur several times each year. The monitoring was based on intensive topographic resurveys of low- and high-order channels using different techniques (cross-section surveys with total station and high-resolution channel surveys with terrestrial and airborne laser scanning). Data on sediment output volumes from the main channel were obtained by a sediment trap. Two debris-flows were observed, as well as several bedload transport flow events. Sediment budget analysis of the two debris-flows revealed that most of the debris-flow volumes were supplied by channel scouring (more than 92%). Bedload transport during autumn contributed to the sediment recharge of high-order channels by the deposition of large gravel wedges. This process is recognized as being fundamental for debris-flow occurrence during the subsequent spring and summer. A time shift of scour-and-fill sequences was observed between low- and high-order channels, revealing the discontinuous sediment transfer in the catchment during common flow events. A conceptual model of sediment routing for different event magnitude is proposed.


2021 ◽  
Author(s):  
Andrea Brenna ◽  
Marco Borga ◽  
Massimiliano Ghinassi ◽  
Lorenzo Marchi ◽  
Mattia Zaramella ◽  
...  

&lt;p&gt;Sediment transfer in mountain streams occurs by processes classified as debris flows, hyperconcentrated flows, debris floods, and water flows. One of the most important tasks in investigating floods in mountain catchments is to identify the transport mechanisms since different sediment-water flows induce peculiar geomorphological dynamics and hazards. This study aims at testing how the energy of water and the amount of sediment involved during a high-magnitude hydrological event can modify the mechanisms of sediment transfer with respect to those occurring during ordinary floods.&lt;/p&gt;&lt;p&gt;The selected case study is the Tegnas catchment (Dolomites, Italy), which, in October 2018, was affected by a severe hydrological event (Vaia Storm) with a recurrence interval of about 200 years. The studied catchment drains an area of 51 km&lt;sup&gt;2&lt;/sup&gt;, with a range in elevation between 2872 and 620 m a.s.l.. The classification of flows that occurred during the Vaia storm was addressed at the sub-reach scale applying a field survey protocol developed to classify the flood deposits based on their sedimentological and morphological features. Following the same approach, we also determined the flow types typifying the stream network during ordinary floods. Additionally, we considered flows predicted by three morphometric approaches for high-magnitude events, and took into account the geomorphological dynamics (e.g., channel changes) and the hydraulic constraints (i.e., unit stream power) that occurred during the Vaia storm.&lt;/p&gt;&lt;p&gt;Water flow was the dominant process during Vaia storm in the Tegnas main steam (12 sub-reaches), although debris flow and debris flood deposits were documented at 3 and 7 sub-reaches, respectively. Water flow was observed in response to ordinary events along the entire Tegnas Torrent. Most of the steep tributaries were affected by debris flows (6 tributaries), but also debris floods were recognized at 3 steep channels. The morphometric approaches had a satisfactory performance in predicting the two end-member flows, but often failed in recognizing sub-reaches affected by debris floods.&lt;/p&gt;&lt;p&gt;The comparison between the occurred high-magnitude flows, and the ordinary flows allowed us to infer the existence of relationships between the transport mechanisms, the hydraulic forcing, and channel dynamics. The upheaval of the ordinary flow types did not occur along the entire stream network. The transition from water flows to debris floods occurred for unit stream powers exceeding the threshold of 5000-6000 Wm&lt;sup&gt;-2&lt;/sup&gt; or downstream of a channel delivering a large amount of sediment mobilized by debris flow to the receiving stream. The occurrence of debris floods, causing higher channel widening than water flows, appears to be facilitated by the injection of fine material into the flow, which can occur as consequence of channel-bank erosion and overbank floodwater re-entering the channel. Finally, morphometric approaches turned out to be adequate to provide a first-order discrimination of expectable high-magnitude flow types. However, the complex relationships found between flow types and a range of hydraulic, morphological, and geological controlling factors, reveal that a more detailed characterization is necessary for understanding the transport mechanisms and predicting geomorphic hazard that can affect specific channel sites during high-magnitude to extreme hydrological events.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document