Faculty Opinions recommendation of High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut.

Author(s):  
Camilla Nesbø
2002 ◽  
Vol 46 (2) ◽  
pp. 349-354 ◽  
Author(s):  
B. Joseph Hinnebusch ◽  
Marie-Laure Rosso ◽  
Tom G. Schwan ◽  
Elisabeth Carniel

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1313
Author(s):  
Ning Zhang ◽  
Xiang Liu ◽  
Bing Li ◽  
Limei Han ◽  
Xuejiao Ma ◽  
...  

Antibiotic resistance is currently a major global public health issue. In particular, the emergence and transfer of antibiotic resistance genes (ARGs) is a matter of primary concern. This study presented a method for ruling out the transfer of naked DNA (plasmid RP4 lysed from donor cells) during the cell-to-cell conjugation, using a modified “U-tube”. A series of gene transfer assays was conducted in both flask and modified U-tube, using Pseudomonas putida KT2440 (P. putida (RP4)) harboring the RP4 plasmid as the donor strain, Escherichia coli (E. coli, ATCC 25922) in pure culture as sole recipient, and bacteria from reclaimed water microcosms as multi-recipients. The verification experiments showed that the U-tube device could prevent direct contact of bacteria without affecting the exchange of free plasmid. In the experiments involving a sole recipient, the transconjugants were obtained in flask samples, but not in modified U-tube. Furthermore, in experiments involving multi-recipients, transfer of naked DNA in the modified U-tube accounted for 5.18% in the transfer frequency of the flask transfer experiment. The modified U-tube proved to be useful for monitoring the interference of naked DNA in the research of conjugative transfer and calculating the exact conjugative transfer rate. This device is identified as a promising candidate for distinguishing different gene transfers in practical application because of its convenient use and easy and simple manufacture.


2004 ◽  
Vol 186 (17) ◽  
pp. 5945-5949 ◽  
Author(s):  
John W. Beaber ◽  
Matthew K. Waldor

ABSTRACT Transfer of SXT, a Vibrio cholerae-derived integrating conjugative element that encodes multiple antibiotic resistance genes, is repressed by SetR, a λ434 cI-related repressor. Here we identify divergent promoters between s086 and setR that drive expression of the regulators of SXT transfer. One transcript encodes the activators of transfer, setC and setD. The second transcript codes for SetR and, like the cI transcript of lambda, is leaderless. SetR binds to four operators located between setR and s086; the locations and relative affinities of these sites suggest a model for regulation of SXT transfer.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Christopher J. Harmer ◽  
Ruth M. Hall

ABSTRACTWe recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26from a compound transposon bounded by IS26. In arecAmutant strain, Tn4352, a kanamycin resistance transposon carrying theaphA1agene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26transposase Tnp26. However, the Tnp26 of only one IS26in Tn4352B was required, specifically the IS26downstream of theaphA1agene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352.These G residues are located immediately adjacent to the two G residues at the left end of the IS26that is upstream of theaphA1agene. Transcription oftnp26was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end.IMPORTANCEResistance to antibiotics limits treatment options. In Gram-negative bacteria, IS26plays a major role in the acquisition and dissemination of antibiotic resistance. IS257(IS431) and IS1216, which belong to the same insertion sequence (IS) family, mobilize resistance genes in staphylococci and enterococci, respectively. Many different resistance genes are found in compound transposons bounded by IS26, and multiply and extensively antibiotic-resistant Gram-negative bacteria often include regions containing several antibiotic resistance genes and multiple copies of IS26. We recently showed that in addition to replicative transposition, IS26can use a conservative movement mechanism in which an incoming IS26targets a preexisting one, and this reaction can create these regions. This mechanism differs from that of all the ISs examined in detail thus far. Here, we have continued to extend understanding of the reactions carried out by IS26by examining whether the reverse precise excision reaction is also catalyzed by the IS26transposase.


mBio ◽  
2022 ◽  
Author(s):  
Lingxian Yi ◽  
Romain Durand ◽  
Frédéric Grenier ◽  
Jun Yang ◽  
Kaiyang Yu ◽  
...  

The spread of clinically relevant antibiotic resistance genes is often linked to the dissemination of epidemic plasmids. However, the underlying molecular mechanisms contributing to the successful spread of epidemic plasmids remain unclear.


Sign in / Sign up

Export Citation Format

Share Document