Faculty Opinions recommendation of Dynein structure and power stroke.

Author(s):  
Manfred Schliwa
Keyword(s):  
Author(s):  
Robert Hard ◽  
Gerald Rupp ◽  
Matthew L. Withiam-Leitch ◽  
Lisa Cardamone

In a coordinated field of beating cilia, the direction of the power stroke is correlated with the orientation of basal body appendages, called basal feet. In newt lung ciliated cells, adjacent basal feet are interconnected by cold-stable microtubules (basal MTs). In the present study, we investigate the hypothesis that these basal MTs stabilize ciliary distribution and alignment. To accomplish this, newt lung primary cultures were treated with the microtubule disrupting agent, Colcemid. In newt lung cultures, cilia normally disperse in a characteristic fashion as the mucociliary epithelium migrates from the tissue explant. Four arbitrary, but progressive stages of dispersion were defined and used to monitor this redistribution process. Ciliaiy beat frequency, coordination, and dispersion were assessed for 91 hrs in untreated (control) and treated cultures. When compared to controls, cilia dispersed more rapidly and ciliary coordination decreased markedly in cultures treated with Colcemid (2 mM). Correlative LM/EM was used to assess whether these effects of Colcemid were coupled to ultrastructural changes. Living cells were defined as having coordinated or uncoordinated cilia and then were processed for transmission EM.


2020 ◽  
Vol 22 (1) ◽  
pp. 104
Author(s):  
Peter Franz ◽  
Wiebke Ewert ◽  
Matthias Preller ◽  
Georgios Tsiavaliaris

The actomyosin system generates mechanical work with the execution of the power stroke, an ATP-driven, two-step rotational swing of the myosin-neck that occurs post ATP hydrolysis during the transition from weakly to strongly actin-bound myosin states concomitant with Pi release and prior to ADP dissociation. The activating role of actin on product release and force generation is well documented; however, the communication paths associated with weak-to-strong transitions are poorly characterized. With the aid of mutant analyses based on kinetic investigations and simulations, we identified the W-helix as an important hub coupling the structural changes of switch elements during ATP hydrolysis to temporally controlled interactions with actin that are passed to the central transducer and converter. Disturbing the W-helix/transducer pathway increased actin-activated ATP turnover and reduced motor performance as a consequence of prolonged duration of the strongly actin-attached states. Actin-triggered Pi release was accelerated, while ADP release considerably decelerated, both limiting maximum ATPase, thus transforming myosin-2 into a high-duty-ratio motor. This kinetic signature of the mutant allowed us to define the fractional occupancies of intermediate states during the ATPase cycle providing evidence that myosin populates a cleft-closure state of strong actin interaction during the weak-to-strong transition with bound hydrolysis products before accomplishing the power stroke.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debo Qi ◽  
Chengchun Zhang ◽  
Jingwei He ◽  
Yongli Yue ◽  
Jing Wang ◽  
...  

AbstractThe fast swimming speed, flexible cornering, and high propulsion efficiency of diving beetles are primarily achieved by their two powerful hind legs. Unlike other aquatic organisms, such as turtle, jellyfish, fish and frog et al., the diving beetle could complete retreating motion without turning around, and the turning radius is small for this kind of propulsion mode. However, most bionic vehicles have not contained these advantages, the study about this propulsion method is useful for the design of bionic robots. In this paper, the swimming videos of the diving beetle, including forwarding, turning and retreating, were captured by two synchronized high-speed cameras, and were analyzed via SIMI Motion. The analysis results revealed that the swimming speed initially increased quickly to a maximum at 60% of the power stroke, and then decreased. During the power stroke, the diving beetle stretched its tibias and tarsi, the bristles on both sides of which were shaped like paddles, to maximize the cross-sectional areas against the water to achieve the maximum thrust. During the recovery stroke, the diving beetle rotated its tarsi and folded the bristles to minimize the cross-sectional areas to reduce the drag force. For one turning motion (turn right about 90 degrees), it takes only one motion cycle for the diving beetle to complete it. During the retreating motion, the average acceleration was close to 9.8 m/s2 in the first 25 ms. Finally, based on the diving beetle's hind-leg movement pattern, a kinematic model was constructed, and according to this model and the motion data of the joint angles, the motion trajectories of the hind legs were obtained by using MATLAB. Since the advantages of this propulsion method, it may become a new bionic propulsion method, and the motion data and kinematic model of the hind legs will be helpful in the design of bionic underwater unmanned vehicles.


Author(s):  
Sanaz Bazaz Behbahani ◽  
Xiaobo Tan

In this paper, we propose a novel design for a pectoral fin joint of a robotic fish. This joint uses a flexible part to enable the rowing pectoral fin to feather passively and thus reduce the hydrodynamic drag in the recovery stroke. On the other hand, a mechanical stopper allows the fin to maintain its motion prescribed by the servomotor in the power stroke. The design results in net thrust even when the fin is actuated symmetrically for the power and recovery strokes. A dynamic model for this joint and for a pectoral fin-actuated robotic fish involving such joints is presented. The pectoral fin is modeled as a rigid plate connected to the servo arm through a pair of torsional spring and damper that describes the flexible joint. The hydrodynamic force on the fin is evaluated with blade element theory, where all three components of the force are considered due to the feathering degree of freedom of the fin. Experimental results on robotic fish prototype are provided to support the effectiveness of the design and the presented dynamic model. We utilize three different joints (with different sizes and different flexible materials), produced with a multi-material 3D printer, and measure the feathering angles of the joints and the forward swimming velocities of the robotic fish. Good match between the model predictions and experimental data is achieved, and the advantage of the proposed flexible joint over a rigid joint, where the power and recovery strokes have to be actuated at different speeds to produce thrust, is demonstrated.


Nature ◽  
2014 ◽  
Vol 518 (7539) ◽  
pp. 435-438 ◽  
Author(s):  
Helgo Schmidt ◽  
Ruta Zalyte ◽  
Linas Urnavicius ◽  
Andrew P. Carter

2015 ◽  
Vol 112 (5) ◽  
pp. 1428-1433 ◽  
Author(s):  
Alexandra Surcel ◽  
Win Pin Ng ◽  
Hoku West-Foyle ◽  
Qingfeng Zhu ◽  
Yixin Ren ◽  
...  

Current approaches to cancer treatment focus on targeting signal transduction pathways. Here, we develop an alternative system for targeting cell mechanics for the discovery of novel therapeutics. We designed a live-cell, high-throughput chemical screen to identify mechanical modulators. We characterized 4-hydroxyacetophenone (4-HAP), which enhances the cortical localization of the mechanoenzyme myosin II, independent of myosin heavy-chain phosphorylation, thus increasing cellular cortical tension. To shift cell mechanics, 4-HAP requires myosin II, including its full power stroke, specifically activating human myosin IIB (MYH10) and human myosin IIC (MYH14), but not human myosin IIA (MYH9). We further demonstrated that invasive pancreatic cancer cells are more deformable than normal pancreatic ductal epithelial cells, a mechanical profile that was partially corrected with 4-HAP, which also decreased the invasion and migration of these cancer cells. Overall, 4-HAP modifies nonmuscle myosin II-based cell mechanics across phylogeny and disease states and provides proof of concept that cell mechanics offer a rich drug target space, allowing for possible corrective modulation of tumor cell behavior.


2009 ◽  
Vol 35 (5) ◽  
pp. 545-547 ◽  
Author(s):  
Wolfgang Kress ◽  
Eilika Weber-Ban
Keyword(s):  

2001 ◽  
Vol 204 (22) ◽  
pp. 3905-3916
Author(s):  
Christopher P. J. Sanford

SUMMARY The tongue-bite apparatus (TBA) of salmonids represents an impressive novel feeding mechanism. The TBA consists of a set of well-developed teeth on the dorsal surface of the anterior hyoid (basihyal) and an opposing set of teeth on the roof of the mouth (vomer). A kinematic analysis of behaviors associated with the TBA in the brook trout Salvelinus fontinalis was performed using high-speed video (250 frames s–1). Two distinct behaviors were identified, raking and open-mouth chewing. Univariate analysis demonstrated that these behaviors were significantly different from one another. The power stroke of raking is characterized by significantly greater neurocranial elevation (raking, 36°; open-mouth chewing, 16°) and retraction of the pectoral girdle (raking, 0.85 cm or 21 % of head length; open-mouth chewing, 0.41 cm or 10 % of head length). Open-mouth chewing is characterized predominantly by dorso-ventral excursions of the anterior hyoid (open-mouth chewing, 0.26 cm; raking, 0.14 cm). Raking is significantly shorter in duration (mean 49 ms) than open-mouth chewing (mean 77 ms). When presented with three different types of prey (crickets, fish or worms), Salvelinus fontinalis showed no variation in raking behavior, indicating that raking is highly stereotyped. In contrast, when feeding on worms, Salvelinus fontinalis modulated open-mouth chewing behavior with shorter durations to maximum displacement (at least 20 ms shorter than for either fish or cricket), although the magnitude of displacements did not vary. The reasons for the shorter duration of displacement variables while feeding on worms remains unclear. During post-capture processing behaviors in Salvelinus fontinalis, the magnitude of displacement variables is highly variable between individuals, but temporal patterns are not. This study characterizes two novel post-capture feeding behaviors and modulation of those behaviors in salmonids.


Sign in / Sign up

Export Citation Format

Share Document