Faculty Opinions recommendation of Selective stabilization of the chorismate mutase transition state by a positively charged hydrogen bond donor.

Author(s):  
Arieh Warshel

The role ofhydrogen bonding in specificity, binding and catalysis by the tyrosyl-tRNA synthetase from Bacillus stearothermophilus has been investigated by systematic mutation of residues which form hydrogen bonds with substrates during the reaction between ATP and tyrosine to form tyrosyl adenylate. Data on hydrogen bonding as a determinant of biological specificity are summarized thus: deletion of an hydrogen-bond donor or acceptor between the enzyme and substrate to leave an unpaired but uncharged acceptor or donor weakens binding by only 2-7 kJ mol -1 ; but deletion to leave an unpaired but charged acceptor or donor weakens binding by some 17 kJ mol -1 or so. Hydrogen bonding is found to have a profound role in catalysis by mediating the differential binding of substrates, transition states and products. The formation of tyrosyl adenylate is not catalysed by classical mechanisms of acid-base or nucleophilic catalysis but the enhancement of rate is solely a result of a combination ofhydrogen bonding and electrostatic interactions which stabilize the transition state of the substrates relative to their ground states. The binding energy of ATP increases by more than 29 kJ mol -1 as it passes through the transition state, enhancing the rate by more than a factor of 10 5 . The residues involved in differential binding are spread over the molecule, away from the seat of reaction. The catalysis is delocalized over the whole binding site and not restricted to one or two specific residues. Some regions of the binding site are complementary in structure to the intermediate, tyrosyl adenylate. The apparent binding energies of certain side chains increase as the reaction proceeds, being weakest in the enzyme—substrate complex, stronger in the enzyme-transition-state complex and strongest in the enzyme-intermediate complex. This converts the unfavourable equilibrium constant for the formation of tyrosyl adenylate in solution to a favourable value for the enzyme-bound reagents and helps sequester the reactive tyrosyl adenylate.


2012 ◽  
Vol 134 (45) ◽  
pp. 18534-18537 ◽  
Author(s):  
Evgeny V. Beletskiy ◽  
Jacob Schmidt ◽  
Xue-Bin Wang ◽  
Steven R. Kass

2021 ◽  
Author(s):  
Zheng Wang ◽  
Yajun Wang ◽  
Qianjie Xie ◽  
Zhiying Fan ◽  
Yehua Shen

The coupling of CO2 and epoxide is promising way to reduce atmospheric carbon by converting it into value-added cyclic carbonate. Pursuing efficient catalysts is highly attractive for the title reaction....


2019 ◽  
Vol 281 ◽  
pp. 423-430 ◽  
Author(s):  
Matteo Tiecco ◽  
Federico Cappellini ◽  
Francesco Nicoletti ◽  
Tiziana Del Giacco ◽  
Raimondo Germani ◽  
...  

2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


2013 ◽  
Vol 117 (39) ◽  
pp. 19991-20001 ◽  
Author(s):  
Julia Wack ◽  
Renée Siegel ◽  
Tim Ahnfeldt ◽  
Norbert Stock ◽  
Luís Mafra ◽  
...  

2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


Sign in / Sign up

Export Citation Format

Share Document