Identifying Selective Host–Guest Interactions Based on Hydrogen Bond Donor–Acceptor Pattern in Functionalized Al-MIL-53 Metal–Organic Frameworks

2013 ◽  
Vol 117 (39) ◽  
pp. 19991-20001 ◽  
Author(s):  
Julia Wack ◽  
Renée Siegel ◽  
Tim Ahnfeldt ◽  
Norbert Stock ◽  
Luís Mafra ◽  
...  

2019 ◽  
Vol 7 (17) ◽  
pp. 10379-10388 ◽  
Author(s):  
T. Wittmann ◽  
C. B. L. Tschense ◽  
L. Zappe ◽  
C. Koschnick ◽  
R. Siegel ◽  
...  

Targeted recognition of medium sized molecules with mixed hydrogen bond units is essential for using porous materials for molecular separation, sensing and drug delivery.



2022 ◽  
Vol 427 ◽  
pp. 132037
Author(s):  
Fanxi Sun ◽  
Xiaoyu Xiong ◽  
Ang Gao ◽  
Yongli Duan ◽  
Lijun Mao ◽  
...  


CrystEngComm ◽  
2017 ◽  
Vol 19 (36) ◽  
pp. 5346-5350 ◽  
Author(s):  
Jinjie Qian ◽  
Jinni Shen ◽  
Qipeng Li ◽  
Yue Hu ◽  
Shaoming Huang

The theoretically optimal adsorption locations in hydroxyl (OH)-decorated metal–organic frameworks show that the captured CO2 molecules interact with the cis-μ2-OH groups in an end-on mode, which shows a moderate to weak hydrogen bond.



2018 ◽  
Vol 20 (40) ◽  
pp. 25772-25779 ◽  
Author(s):  
Pavel M. Usov ◽  
Chanel F. Leong ◽  
Bun Chan ◽  
Mikihiro Hayashi ◽  
Hiroshi Kitagawa ◽  
...  

Donor–Acceptor Metal–Organic Frameworks display redox and pressure dependent charge transfer properties.



2021 ◽  
Vol 9 (36) ◽  
pp. 12086-12093
Author(s):  
Junjie Wang ◽  
Yao Cheng ◽  
Jie Zhou ◽  
Weihua Tang

Zn(ii)-based MOF for detecting FOX-7 like explosives is designed via hydrogen-bond-intensified host–guest interactions. The crystalline MOF achieves 0.14 ppm detection limit and a highest fluorescence quenching constant of 3.22 × 104 M−1.



2020 ◽  
Vol 76 (6) ◽  
pp. 605-615
Author(s):  
Yong-Jin Zhao ◽  
Jian-Ping Ma ◽  
Jianzhong Fan ◽  
Yan Geng ◽  
Yu-Bin Dong

The tridentate organic ligand 4,4′,4′′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoic acid (H3L) has been synthesized (as the methanol 1.25-solvate, C48H39NO6·1.25CH3OH). As a donor–acceptor motif molecule, H3L possess strong intramolecular charge transfer (ICT) fluorescence. Through hydrogen bonds, H3L molecules construct a two-dimensional (2D) network, which pack together into three-dimensional (3D) networks with an ABC stacking pattern in the crystalline state. Based on H3L and M(NO3)2 salts (M = Cd and Zn) under solvothermal conditions, two metal–organic frameworks (MOFs), namely, catena-poly[[triaquacadmium(II)]-μ-10-(4-carboxyphenyl)-4,4′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6-diyl)dibenzoato], [Cd(C48H37NO6)(H2O)3] n , I, and poly[[μ3-4,4′,4′′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoato](μ3-hydroxido)zinc(II)], [Zn2(C48H36NO6)(OH)] n , II, were synthesized. Single-crystal analysis revealed that both MOFs adopt a 3D structure. In I, partly deprotonated HL 2− behaves as a bidentate ligand to link a CdII ion to form a one-dimensional chain. In the solid state of I, the existence of weak interactions, such as O—H...O hydrogen bonds and π–π interactions, plays an essential role in aligning 2D nets and 3D networks with AB packing patterns for I. The deprotonated ligand L 3− in II is utilized as a tridentate building block to bind ZnII ions to construct 3D networks, where unusual Zn4O14 clusters act as connection nodes. As a donor–acceptor molecule, H3L exhibits fluorescence with a photoluminescence quantum yield (PLQY) of 70% in the solid state. In comparison, the PL of both MOFs is red-shifted with even higher PLQYs of 79 and 85% for I and II, respectively.



2020 ◽  
Vol 124 (29) ◽  
pp. 16111-16115 ◽  
Author(s):  
Chao Liu ◽  
Kun Zhai ◽  
Zhipeng Yu ◽  
Anmin Nie ◽  
Zhongyuan Liu ◽  
...  


2020 ◽  
Vol 7 (19) ◽  
pp. 3548-3554
Author(s):  
Keke Wang ◽  
Qunmin Wang ◽  
Xiong Wang ◽  
Mei Wang ◽  
Qin Wang ◽  
...  

Intramolecular hydrogen bonds in ligands restrict the rotation of carboxyl groups and consequently enhance the chemical stability of MOFs.



Sign in / Sign up

Export Citation Format

Share Document