Faculty Opinions recommendation of OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain.

Author(s):  
Koreaki Ito
Cell ◽  
2003 ◽  
Vol 113 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Nathan P Walsh ◽  
Benjamin M Alba ◽  
Baundauna Bose ◽  
Carol A Gross ◽  
Robert T Sauer

PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23713 ◽  
Author(s):  
Corinne Appia-Ayme ◽  
Elaine Patrick ◽  
Matthew J. Sullivan ◽  
Mark J. Alston ◽  
Sarah J. Field ◽  
...  

Microbiology ◽  
2015 ◽  
Vol 161 (5) ◽  
pp. 1113-1123 ◽  
Author(s):  
Jaeseop Lee ◽  
Young-Ha Park ◽  
Yeon-Ran Kim ◽  
Yeong-Jae Seok ◽  
Chang-Ro Lee

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163689 ◽  
Author(s):  
Yiqin Deng ◽  
Chang Chen ◽  
Zhe Zhao ◽  
Jingjing Zhao ◽  
Annick Jacq ◽  
...  

2021 ◽  
Author(s):  
Philipp F. Popp ◽  
Vadim M. Gumerov ◽  
Ekaterina P. Andrianova ◽  
Lisa Bewersdorf ◽  
Thorsten Mascher ◽  
...  

AbstractThe bacterial cell envelope is an essential structure that protects the cell from environmental threats, while simultaneously serving as communication interface and diffusion barrier. Therefore, maintaining cell envelope integrity is of vital importance for all microorganisms. Not surprisingly, evolution has shaped conserved protection networks that connect stress perception, transmembrane signal transduction and mediation of cellular responses upon cell envelope stress. The phage shock protein (PSP) stress response is one of such conserved protection networks. Most of the knowledge about the Psp response comes from studies in the Gram-negative model bacterium, Escherichia coli where the Psp system consists of several well-defined protein components. Homologous systems were identified in representatives of Proteobacteria, Actinobacteria, and Firmicutes; however, the Psp system distribution in the microbial world remains largely unknown. By carrying out a large-scale, unbiased comparative genomics analysis, we found components of the Psp system in many bacterial and archaeal phyla and demonstrated that the PSP system deviates dramatically from the proteobacterial prototype. Two of its core proteins, PspA and PspC, have been integrated in various (often phylum-specifically) conserved protein networks during evolution. Based on protein sequence and gene neighborhood analyses of pspA and pspC homologs, we built a natural classification system of PSP networks in bacteria and archaea. We performed a comprehensive in vivo protein interaction screen for the PSP network newly identified in the Gram-positive model organism Bacillus subtilis and found a strong interconnected PSP response system, illustrating the validity of our approach. Our study highlights the diversity of PSP organization and function across many bacterial and archaeal phyla and will serve as foundation for future studies of this envelope stress response beyond model organisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiao Meng ◽  
Glenn Young ◽  
Jingyu Chen

The bacterial cell envelope is a protective barrier at the frontline of bacterial interaction with the environment, and its integrity is regulated by various stress response systems. The Rcs (regulator of capsule synthesis) system, a non-orthodox two-component regulatory system (TCS) found in many members of the Enterobacteriaceae family, is one of the envelope stress response pathways. The Rcs system can sense envelope damage or defects and regulate the transcriptome to counteract stress, which is particularly important for the survival and virulence of pathogenic bacteria. In this review, we summarize the roles of the Rcs system in envelope stress responses (ESRs) and virulence regulation. We discuss the environmental and intrinsic sources of envelope stress that cause activation of the Rcs system with an emphasis on the role of RcsF in detection of envelope stress and signal transduction. Finally, the different regulation mechanisms governing the Rcs system’s control of virulence in several common pathogens are introduced. This review highlights the important role of the Rcs system in the environmental adaptation of bacteria and provides a theoretical basis for the development of new strategies for control, prevention, and treatment of bacterial infections.


2017 ◽  
Vol 106 (5) ◽  
pp. 719-741 ◽  
Author(s):  
Britta Kleine ◽  
Ava Chattopadhyay ◽  
Tino Polen ◽  
Daniela Pinto ◽  
Thorsten Mascher ◽  
...  

2016 ◽  
Vol 198 (17) ◽  
pp. 2345-2351 ◽  
Author(s):  
Anna Konovalova ◽  
Jaclyn A. Schwalm ◽  
Thomas J. Silhavy

ABSTRACTThe σE envelope stress response is an essential signal transduction pathway which detects and removes mistargeted outer membrane (OM) β-barrel proteins (OMPs) in the periplasm ofEscherichia coli. It relies on σE, an alternative sigma factor encoded by therpoEgene. Here we report a novel mutation, a nucleotide change of C to A in the third base of the second codon, which increases levels of σE (rpoE_S2R). TherpoE_S2Rmutation does not lead to the induction of the stress response during normal growth but instead changes the dynamics of induction upon periplasmic stress, resulting in a faster and more robust response. This allows cells to adapt faster to the periplasmic stress, avoiding lethal accumulation of unfolded OMPs in the periplasm caused by severe defects in the OMP assembly pathway.IMPORTANCESurvival of bacteria under conditions of external or internal stresses depends on timely induction of stress response signaling pathways to regulate expression of appropriate genes that function to maintain cellular homeostasis. Previous studies have shown that strong preinduction of envelope stress responses can allow bacteria to survive a number of lethal genetic perturbations. In our paper, we describe a unique mutation that enhances kinetics of the σE envelope stress response pathway rather than preinducing the response. This allows bacteria to quickly adapt to sudden and severe periplasmic stress.


Sign in / Sign up

Export Citation Format

Share Document