Faculty Opinions recommendation of The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life.

Author(s):  
Tony Crowther
2009 ◽  
Vol 37 (1) ◽  
pp. 114-117 ◽  
Author(s):  
Jennifer Fulton ◽  
Brian Bothner ◽  
Martin Lawrence ◽  
John E. Johnson ◽  
Trevor Douglas ◽  
...  

STIV (Sulfolobus turreted icosahedral virus) has been the subject of detailed structural, genetic, transcriptomic, proteomic and biochemical studies. STIV arguably has been investigated in more detail than any other archaeal virus. As a result, we know more about STIV than other viruses infecting members of the Archaea domain. Like most viruses isolated from crenarchaeal hosts, STIV has little in common with viruses that infect eukaryotic and bacterial hosts and should be considered the founding member of a new virus family. However, despite this lack of obvious homology with other viruses, STIV has components of gene content, replication strategy and particle structure reminiscent of viruses of the Eukarya and Bacteria domains, suggesting an evolutionary relationship between viruses from all domains of life. The present mini-review describes the current knowledge of this virus and insights it has given us into viral and cellular evolution, as well as newly developed tools for the further study of STIV–host interactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anthony C. Woo ◽  
Morgan Gaia ◽  
Julien Guglielmini ◽  
Violette Da Cunha ◽  
Patrick Forterre

Double-stranded DNA viruses of the realm Varidnaviria (formerly PRD1-adenovirus lineage) are characterized by homologous major capsid proteins (MCPs) containing one (kingdom: Helvetiavirae) or two β-barrel domains (kingdom: Bamfordvirae) known as the jelly roll folds. Most of them also share homologous packaging ATPases (pATPases). Remarkably, Varidnaviria infect hosts from the three domains of life, suggesting that these viruses could be very ancient and share a common ancestor. Here, we analyzed the evolutionary history of Varidnaviria based on single and concatenated phylogenies of their MCPs and pATPases. We excluded Adenoviridae from our analysis as their MCPs and pATPases are too divergent. Sphaerolipoviridae, the only family in the kingdom Helvetiavirae, exhibit a complex history: their MCPs are very divergent from those of other Varidnaviria, as expected, but their pATPases groups them with Bamfordvirae. In single and concatenated trees, Bamfordvirae infecting archaea were grouped with those infecting bacteria, in contradiction with the cellular tree of life, whereas those infecting eukaryotes were organized into three monophyletic groups: the Nucleocytoviricota phylum, formerly known as the Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs), Lavidaviridae (virophages) and Polintoviruses. Although our analysis mostly supports the recent classification proposed by the International Committee on Taxonomy of Viruses (ICTV), it also raises questions, such as the validity of the Adenoviridae and Helvetiavirae ranking. Based on our phylogeny, we discuss current hypotheses on the origin and evolution of Varidnaviria and suggest new ones to reconcile the viral and cellular trees.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Jordan Jennings ◽  
Jiong Shi ◽  
Janani Varadarajan ◽  
Parker J. Jamieson ◽  
Christopher Aiken

ABSTRACT A defining activity of retroviruses is reverse transcription, the process by which the viral genomic RNA is converted into the double-stranded DNA required for virus replication. Reverse transcriptase (RT), the viral enzyme responsible for this process, was identified in 1970 by assaying permeabilized retrovirus particles for DNA synthesis in vitro. Such reactions are inefficient, with only a small fraction of viral genomes being converted to full-length double-stranded DNA molecules, possibly owing to disruption of the structure of the viral core. Here, we show that reverse transcription in purified HIV-1 cores is enhanced by the addition of the capsid-binding host cell metabolite inositol hexakisphosphate (IP6). IP6 potently enhanced full-length minus-strand synthesis, as did hexacarboxybenzene (HCB), which also stabilizes the HIV-1 capsid. Both IP6 and HCB stabilized the association of the viral CA and RT proteins with HIV-1 cores. In contrast to the wild type, cores isolated from mutant HIV-1 particles containing intrinsically hyperstable capsids exhibited relatively efficient reverse transcription in the absence of IP6, further indicating that the compound promotes reverse transcription by stabilizing the viral capsid. We also observed that the capsid-destabilizing antiviral compound PF74 inhibited endogenous reverse transcription with a potency that mirrors its ability to inhibit reverse transcription during infection. Our results show that the stabilization of the HIV-1 capsid permits efficient reverse transcription in HIV-1 cores, providing a sensitive experimental system for analyzing the functions of viral and host cell molecules and the role of capsid disassembly (uncoating) in the process. IMPORTANCE HIV-1 infection requires reverse transcription of the viral genome. While much is known about the biochemistry of reverse transcription from simplified biochemical reactions, reverse transcription during infection takes place within a viral core. However, endogenous reverse transcription reactions using permeabilized HIV-1 virions or purified viral cores have been inefficient. Using viral cores purified from infectious HIV-1 particles, we show that efficient reverse transcription is achieved in vitro by addition of the capsid-stabilizing metabolite inositol hexakisphosphate. The enhancement of reverse transcription was linked to the capsid-stabilizing effect of the compound, consistent with the known requirement for an intact or semi-intact viral capsid for HIV-1 infection. Our results establish a biologically relevant system for dissecting the function of the viral capsid and its disassembly during reverse transcription. The system should also prove useful for mechanistic studies of capsid-targeting antiviral drugs.


2010 ◽  
Vol 84 (18) ◽  
pp. 9575-9583 ◽  
Author(s):  
Reza Khayat ◽  
Chi-yu Fu ◽  
Alice C. Ortmann ◽  
Mark J. Young ◽  
John E. Johnson

ABSTRACT Viruses utilize a diverse array of mechanisms to deliver their genomes into hosts. While great strides have been made in understanding the genome delivery of eukaryotic and prokaryotic viruses, little is known about archaeal virus genome delivery and the associated particle changes. The Sulfolobus turreted icosahedral virus (STIV) is a double-stranded DNA (dsDNA) archaeal virus that contains a host-derived membrane sandwiched between the genome and the proteinaceous capsid shell. Using cryo-electron microscopy (cryo-EM) and different biochemical treatments, we identified three viral morphologies that may correspond to biochemical disassembly states of STIV. One of these morphologies was subtly different from the previously published 27-Å-resolution electron density that was interpreted with the crystal structure of the major capsid protein (MCP). However, these particles could be analyzed at 12.5-Å resolution by cryo-EM. Comparing these two structures, we identified the location of multiple proteins forming the large turret-like appendages at the icosahedral vertices, observed heterogeneous glycosylation of the capsid shell, and identified mobile MCP C-terminal arms responsible for tethering and releasing the underlying viral membrane to and from the capsid shell. Collectively, our studies allow us to propose a fusogenic mechanism of genome delivery by STIV, in which the dismantled capsid shell allows for the fusion of the viral and host membranes and the internalization of the viral genome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Simón ◽  
Juan Cristina ◽  
Héctor Musto

The genetic material of the three domains of life (Bacteria, Archaea, and Eukaryota) is always double-stranded DNA, and their GC content (molar content of guanine plus cytosine) varies between ≈ 13% and ≈ 75%. Nucleotide composition is the simplest way of characterizing genomes. Despite this simplicity, it has several implications. Indeed, it is the main factor that determines, among other features, dinucleotide frequencies, repeated short DNA sequences, and codon and amino acid usage. Which forces drive this strong variation is still a matter of controversy. For rather obvious reasons, most of the studies concerning this huge variation and its consequences, have been done in free-living organisms. However, no recent comprehensive study of all known viruses has been done (that is, concerning all available sequences). Viruses, by far the most abundant biological entities on Earth, are the causative agents of many diseases. An overview of these entities is important also because their genetic material is not always double-stranded DNA: indeed, certain viruses have as genetic material single-stranded DNA, double-stranded RNA, single-stranded RNA, and/or retro-transcribing. Therefore, one may wonder if what we have learned about the evolution of GC content and its implications in prokaryotes and eukaryotes also applies to viruses. In this contribution, we attempt to describe compositional properties of ∼ 10,000 viral species: base composition (globally and according to Baltimore classification), correlations among non-coding regions and the three codon positions, and the relationship of the nucleotide frequencies and codon usage of viruses with the same feature of their hosts. This allowed us to determine how the base composition of phages strongly correlate with the value of their respective hosts, while eukaryotic viruses do not (with fungi and protists as exceptions). Finally, we discuss some of these results concerning codon usage: reinforcing previous results, we found that phages and hosts exhibit moderate to high correlations, while for eukaryotes and their viruses the correlations are weak or do not exist.


Sign in / Sign up

Export Citation Format

Share Document