scholarly journals Faculty Opinions recommendation of Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis.

Author(s):  
Barry Rouse
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2654-2654
Author(s):  
Jens G. Lohr ◽  
Birgit Knoechel ◽  
Estelle C. Kahn ◽  
Abul K. Abbas

Abstract We have developed a mouse model in which a GvHD-like syndrome develops in response to a defined soluble self-antigen. This phenotype is caused after transfer of CD4+ T cells that have a single specificity and are reactive to the self-antigen into a lymphopenic host that expresses the cognate antigen. By using a clonotypic antibody we are able to identify these cells and can therefore follow their migration, kinetics and functional characteristics. At least two distinct phases can be identified by clinical picture and correlated with accumulation of T cells - an early phase, resembling acute GvHD, leading to wasting and death coinciding with rapid accumulation of T cells, and a late phase in which a stable number of T cells is maintained clinically reminiscent of chronic GvHD. We show here that a fraction of the naïve T cells that encounter the self-antigen after transfer develop into CD4+CD25+ regulatory T cells (Treg) in the periphery. This population controls T cell homeostasis, activation and severe immune pathology. The development of CD4+CD25+ Treg critically depends on IL-2 produced by the T cells. Therefore, in the absence of IL-2, T cell homeostasis cannot be maintained and massive accumulation of CD4+ T cells leads to severe inflammation of the skin. Importantly, only IL-2 that is produced by the T cells themselves, but not from peripheral tissues, leads to efficient generation of Treg and T cell homeostasis. We suggest that Treg-development is a differentiation step of T cells that encounter self-antigen in the periphery, and is essential for maintaining homeostasis even in the presence of self-recognition. Our data provide mechanistic insight into the re-establishment of homeostasis after cell transfer into a lymphopenic host and have important implications for the use and timing of therapeutic approaches targeting the IL-2 pathway.


2010 ◽  
Vol 30 (6) ◽  
pp. 502-506 ◽  
Author(s):  
Kimito Kawahata ◽  
Takeyuki Kanzaki ◽  
Mitsuru Imamura ◽  
Lisa Akahira ◽  
Kazuya Michishita ◽  
...  

2022 ◽  
Author(s):  
Zuochen Du ◽  
Jinzhi Wang ◽  
Di Yang ◽  
Xiaoyu Sun ◽  
Lu Huang ◽  
...  

Abstract Cell metabolism is crucial for orchestrating the differentiation and function of regulatory T cells (Tregs). However, the underlying signaling mechanism that coordinates cell metabolism to regulate Treg activity is not completely understood. As a pivotal molecule in lipid metabolism, the role of SHIP-1 has been studied extensively in B cells and CD4 T cells, yet its regulatory role in Tregs remains unknown. In this study, we generated “SHIP-1 KO mice” that have SHIP-1 specifically deleted in regulatory T cells by crossing Foxp3YFP-cre mice with SHIP-1fl/fl mice. Surprisingly, SHIP-1 KO mice had severe autoimmunity with increased Tregs in the thymus and disrupted peripheral T cell homeostasis. Mechanistically, CD4Cre SHIP-1flox/flox mice were found to have increased Treg precursors and SHIP-1 KO Tregs had reduced migration and stability, which caused decreased Tregs in the spleen. Additionally, the suppressive function of Tregs from SHIP-1 KO mice was diminished, along with their promotion of anti-tumor immunity. Interestingly, the PI3K-mTORC1, but not mTORC2, signaling axis was enhanced in SHIP-1 KO Tregs. In vivo treatment of SHIP-1 KO mice with rapamycin rescued the abnormal Treg percentages and peripheral T cell homeostasis, as well as Treg suppressive function. Furthermore, the treatment of wild-type mice with SHIP-1 inhibitor enhanced anti-tumor activity. Our study has revealed a previously unrecognized underlying function of SHIP-1 in Tregs, which highlights the SHIP-1-PI3K-mTORC1 axis that regulates Treg differentiation and function.


2003 ◽  
Vol 171 (11) ◽  
pp. 5853-5864 ◽  
Author(s):  
Matthew A. Burchill ◽  
Christine A. Goetz ◽  
Martin Prlic ◽  
Jennifer J. O’Neil ◽  
Ian R. Harmon ◽  
...  

2003 ◽  
Vol 33 (9) ◽  
pp. 2419-2428 ◽  
Author(s):  
Alice Banz ◽  
António Peixoto ◽  
Christiane Pontoux ◽  
Corinne Cordier ◽  
Benedita Rocha ◽  
...  

2007 ◽  
Vol 136 (4) ◽  
pp. 641-648 ◽  
Author(s):  
Christian Hoffmann ◽  
Hans-Juergen Stellbrink ◽  
Thomas Dielschneider ◽  
Olaf Degen ◽  
Albrecht Stoehr ◽  
...  

2019 ◽  
Vol 3 (23) ◽  
pp. 4081-4094 ◽  
Author(s):  
Shuntaro Ikegawa ◽  
Yusuke Meguri ◽  
Takumi Kondo ◽  
Hiroyuki Sugiura ◽  
Yasuhisa Sando ◽  
...  

Key Points PD-1 blockade exacerbated GVHD by altering the homeostasis of Tregs and effector T cells after HSCT. PTCy ameliorated GVHD after PD-1 blockade by restoring the homeostatic balance of T-cell subsets.


2009 ◽  
Vol 206 (10) ◽  
pp. 2111-2119 ◽  
Author(s):  
Ning Lu ◽  
Yi-Hong Wang ◽  
Yui-Hsi Wang ◽  
Kazuhiko Arima ◽  
Shino Hanabuchi ◽  
...  

Whether thymic stromal lymphopoietin (TSLP) directly induces potent human CD4+ T cell proliferation and Th2 differentiation is unknown. We report that resting and activated CD4+ T cells expressed high levels of IL-7 receptor a chain but very low levels of TSLP receptor (TSLPR) when compared with levels expressed in myeloid dendritic cells (mDCs). This was confirmed by immunohistology and flow cytometry analyses showing that only a subset of mDCs, with more activated phenotypes, expressed TSLPR in human tonsils in vivo. IL-7 induced strong STAT1, -3, and -5 activation and promoted the proliferation of naive CD4+ T cells in the presence of anti-CD3 and anti-CD28 monoclonal antibodies, whereas TSLP induced weak STAT5 activation, associated with marginally improved cell survival and proliferation, but failed to induce cell expansion and Th2 differentiation. The effect of TSLP on enhancing strong human T cell proliferation was observed only when sorted naive CD4+ T cells were cultured with mDCs at levels as low as 0.5%. TSLP could only induce naive CD4+ T cells to differentiate into Th2 cells in the presence of allogeneic mDCs. These results demonstrate that IL-7 and TSLP use different mechanisms to regulate human CD4+ T cell homeostasis.


Sign in / Sign up

Export Citation Format

Share Document