Faculty Opinions recommendation of Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells.

Author(s):  
Robert Parton
2004 ◽  
Vol 167 (3) ◽  
pp. 531-543 ◽  
Author(s):  
Agnes Lee Ang ◽  
Tomohiko Taguchi ◽  
Stephen Francis ◽  
Heike Fölsch ◽  
Lindsay J. Murrells ◽  
...  

The AP-1B clathrin adaptor complex is responsible for the polarized transport of many basolateral membrane proteins in epithelial cells. Localization of AP-1B to recycling endosomes (REs) along with other components (exocyst subunits and Rab8) involved in AP-1B–dependent transport suggested that RE might be an intermediate between the Golgi and the plasma membrane. Although the involvement of endosomes in the secretory pathway has long been suspected, we now present direct evidence using four independent methods that REs play a role in basolateral transport in MDCK cells. Newly synthesized AP-1B–dependent cargo, vesicular stomatitis virus glycoprotein G (VSV-G), was found by video microscopy, immunoelectron microscopy, and cell fractionation to enter transferrin-positive REs within a few minutes after exit from the trans-Golgi network. Although transient, RE entry appears essential because enzymatic inactivation of REs blocked VSV-G delivery to the cell surface. Because an apically targeted VSV-G mutant behaved similarly, these results suggest that REs not only serve as an intermediate but also as a common site for polarized sorting on the endocytic and secretory pathways.


1994 ◽  
Vol 5 (10) ◽  
pp. 1093-1103 ◽  
Author(s):  
A K Rajasekaran ◽  
J S Humphrey ◽  
M Wagner ◽  
G Miesenböck ◽  
A Le Bivic ◽  
...  

Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes.


1996 ◽  
Vol 133 (3) ◽  
pp. 543-558 ◽  
Author(s):  
A Müsch ◽  
H Xu ◽  
D Shields ◽  
E Rodriguez-Boulan

Current model propose that in nonpolarized cells, transport of plasma membrane proteins to the surface occurs by default. In contrast, compelling evidence indicates that in polarized epithelial cells, plasma membrane proteins are sorted in the TGN into at least two vectorial routes to apical and basolateral surface domains. Since both apical and basolateral proteins are also normally expressed by both polarized and nonpolarized cells, we explored here whether recently described basolateral sorting signals in the cytoplasmic domain of basolateral proteins are recognized and used for post TGN transport by nonpolarized cells. To this end, we compared the inhibitory effect of basolateral signal peptides on the cytosol-stimulated release of two basolateral and one apical marker in semi-intact fibroblasts (3T3), pituitary (GH3), and epithelial (MDCK) cells. A basolateral signal peptide (VSVGp) corresponding to the 29-amino acid cytoplasmic tail of vesicular stomatitis virus G protein (VSVG) inhibited with identical potency the vesicular release of VSVG from the TGN of all three cell lines. On the other hand, the VSVG peptide did not inhibit the vesicular release of HA in MDCK cells not of two polypeptide hormones (growth hormone and prolactin) in GH3 cells, whereas in 3T3 cells (influenza) hemagglutinin was inhibited, albeit with a 3x lower potency than VSVG. The results support the existence of a basolateral-like, signal-mediated constitutive pathway from TGN to plasma membrane in all three cell types, and suggest that an apical-like pathway may be present in fibroblast. The data support cargo protein involvement, not bulk flow, in the formation of post-TGN vesicles and predict the involvement of distinct cytosolic factors in the assembly of apical and basolateral transport vesicles.


1987 ◽  
Vol 105 (4) ◽  
pp. 1623-1635 ◽  
Author(s):  
G van Meer ◽  
E H Stelzer ◽  
R W Wijnaendts-van-Resandt ◽  
K Simons

To study the intracellular transport of newly synthesized sphingolipids in epithelial cells we have used a fluorescent ceramide analog, N-6[7-nitro-2,1,3-benzoxadiazol-4-yl] aminocaproyl sphingosine (C6-NBD-ceramide; Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA, 80:2608-2612) as a probe. This ceramide was readily taken up by filter-grown Madin-Darby canine kidney (MDCK) cells from liposomes at 0 degrees C. After penetration into the cell, the fluorescent probe accumulated in the Golgi area at temperatures between 0 and 20 degrees C. Chemical analysis showed that C6-NBD-ceramide was being converted into C6-NBD-sphingomyelin and C6-NBD-glucosyl-ceramide. An analysis of the fluorescence pattern after 1 h at 20 degrees C by means of a confocal scanning laser fluorescence microscope revealed that the fluorescent marker most likely concentrated in the Golgi complex itself. Little fluorescence was observed at the plasma membrane. Raising the temperature to 37 degrees C for 1 h resulted in intense plasma membrane staining and a loss of fluorescence from the Golgi complex. Addition of BSA to the apical medium cleared the fluorescence from the apical but not from the basolateral plasma membrane domain. The basolateral fluorescence could be depleted only by adding BSA to the basal side of a monolayer of MDCK cells grown on polycarbonate filters. We conclude that the fluorescent sphingomyelin and glucosylceramide were delivered from the Golgi complex to the plasma membrane where they accumulated in the external leaflet of the membrane bilayer. The results also demonstrated that the fatty acyl labeled lipids were unable to pass the tight junctions in either direction. Quantitation of the amount of NBD-lipids delivered to the apical and the basolateral plasma membranes during incubation for 1 h at 37 degrees C showed that the C6-NBD-glucosylceramide was two- to fourfold enriched on the apical as compared to the basolateral side, while C6-NBD-sphingomyelin was about equally distributed. Since the surface area of the apical plasma membrane is much smaller than that of the basolateral membrane, both lipids achieved a higher concentration on the apical surface. Altogether, our results suggest that the NBD-lipids are sorted in MDCK cells in a way similar to their natural counterparts.


2003 ◽  
Vol 285 (5) ◽  
pp. C1091-C1100 ◽  
Author(s):  
Stephen A. Kempson ◽  
Vaibhave Parikh ◽  
Lixuan Xi ◽  
Shaoyou Chu ◽  
Marshall H. Montrose

The betaine transporter (BGT1) protects cells in the hypertonic renal inner medulla by mediating uptake and accumulation of the osmolyte betaine. Transcriptional regulation plays an essential role in upregulation of BGT1 transport when renal cells are exposed to hypertonic medium for 24 h. Posttranscriptional regulation of the BGT1 protein is largely unexplored. We have investigated the distribution of BGT1 protein in live cells after transfection with BGT1 tagged with enhanced green fluorescent protein (EGFP). Fusion of EGFP to the NH2 terminus of BGT1 produced a fusion protein (EGFP-BGT) with transport properties identical to normal BGT1, as determined by ion dependence, inhibitor sensitivity, and apparent Km for GABA. Confocal microscopy of EGFP-BGT fluorescence in transfected Madin-Darby canine kidney (MDCK) cells showed that hypertonic stress for 24 h induced a shift in subcellular distribution from cytoplasm to plasma membrane. This was confirmed by colocalization with anti-BGT1 antibody staining. In fibroblasts, transfected EGFP-BGT caused increased transport in response to hypertonic stress. The activation of transport was not accompanied by increased expression of EGFP-BGT, as determined by Western blotting. Membrane insertion of EGFP-BGT protein in MDCK cells began within 2-3 h after onset of hypertonic stress and was blocked by cycloheximide. We conclude that posttranscriptional regulation of BGT1 is essential for adaptation to hypertonic stress and that insertion of BGT1 protein to the plasma membrane may require accessory proteins.


2010 ◽  
Vol 84 (9) ◽  
pp. 4646-4658 ◽  
Author(s):  
Anja Habermann ◽  
Jacomine Krijnse-Locker ◽  
Heike Oberwinkler ◽  
Manon Eckhardt ◽  
Stefanie Homann ◽  
...  

ABSTRACT CD317/Bst-2/tetherin is a host factor that restricts the release of human immunodeficiency virus type 1 (HIV-1) by trapping virions at the plasma membrane of certain producer cells. It is antagonized by the HIV-1 accessory protein Vpu. Previous light microscopy studies localized CD317 to the plasma membrane and the endosomal compartment and showed Vpu induced downregulation. In the present study, we performed quantitative immunoelectron microscopy of CD317 in cells producing wild-type or Vpu-defective HIV-1 and in control cells. Double-labeling experiments revealed that CD317 localizes to the plasma membrane, to early and recycling endosomes, and to the trans-Golgi network. CD317 largely relocated to endosomes upon HIV-1 infection, and this effect was partly counteracted by Vpu. Unexpectedly, CD317 was enriched in the membrane of viral buds and cell-associated and cell-free viruses compared to the respective plasma membrane, and this enrichment was independent of Vpu. These results suggest that the tethering activity of CD317 critically depends on its density at the cell surface and appears to be less affected by its density in the virion membrane.


2006 ◽  
Vol 172 (7) ◽  
pp. 1023-1034 ◽  
Author(s):  
Simona Paladino ◽  
Thomas Pocard ◽  
Maria Agata Catino ◽  
Chiara Zurzolo

The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin–Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.


2001 ◽  
Vol 114 (10) ◽  
pp. 1893-1900 ◽  
Author(s):  
S. Lusa ◽  
T.S. Blom ◽  
E.L. Eskelinen ◽  
E. Kuismanen ◽  
J.E. Mansson ◽  
...  

In mammalian cells, cholesterol is thought to associate with sphingolipids to form lateral membrane domains termed rafts. Increasing evidence suggests that rafts regulate protein interactions, for example, during signalling, intracellular transport and host-pathogen interactions. Rafts are present in cholesterol-sphingolipid-enriched membranes, including early and recycling endosomes, but whether rafts are found in late endocytic organelles has not been analyzed. In this study, we analyzed the association of cholesterol and late endosomal proteins with low-density detergent-resistant membranes (DRMs) in normal cells and in cells with lysosomal cholesterol-sphingolipid accumulation. In normal cells, the majority of [(3)H]cholesterol released from [(3)H]cholesterol ester-LDL associated with detergent-soluble membranes, was rapidly transported to the plasma membrane and became increasingly insoluble with time. In Niemann-Pick C1 (NPC1) protein-deficient lipidosis cells, the association of LDL-cholesterol with DRMs was enhanced and its transport to the plasma membrane was inhibited. In addition, the NPC1 protein was normally recovered in detergent-soluble membranes and its association with DRMs was enhanced by lysosomal cholesterol loading. Moreover, lysosomal cholesterol deposition was kinetically paralleled by the sequestration of sphingolipids and formation of multilamellar bodies in late endocytic organelles. These results suggest that late endocytic organelles are normally raft-poor and that endocytosed LDL-cholesterol is efficiently recycled to the plasma membrane in an NPC1-dependent process. The cholesterol-sphingolipid accumulation characteristic to NPC disease, and potentially to other sphingolipidoses, causes an overcrowding of rafts forming lamellar bodies in the degradative compartments.


2001 ◽  
Vol 114 (7) ◽  
pp. 1331-1341 ◽  
Author(s):  
A.K. Criss ◽  
D.M. Ahlgren ◽  
T.S. Jou ◽  
B.A. McCormick ◽  
J.E. Casanova

The bacterial pathogen Salmonella typhimurium colonizes its animal hosts by inducing its internalization into intestinal epithelial cells. This process requires reorganization of the actin cytoskeleton of the apical plasma membrane into elaborate membrane ruffles that engulf the bacteria. Members of the Ρ family of small GTPases are critical regulators of actin structure, and in nonpolarized cells, the GTPase Cdc42 has been shown to modulate Salmonella entry. Because the actin architecture of epithelial cells is organized differently from that of nonpolarized cells, we examined the role of two ‘Rgr; family GTPases, Cdc42 and Rac1, in invasion of polarized monolayers of MDCK cells by S. typhimurium. Surprisingly, we found that endogenous Rac1, but not Cdc42, was activated during bacterial entry at the apical pole, and that this activation required the bacterial effector protein SopE. Furthermore, expression of dominant inhibitory Rac1 but not Cdc42 significantly inhibited apical internalization of Salmonella, indicating that Rac1 activation is integral to the bacterial entry process. In contrast, during basolateral internalization, both Cdc42 and Rac1 were activated; however, neither GTPase was required for entry. These findings, which differ significantly from previous observations in nonpolarized cells, indicate that the host cell signaling pathways activated by bacterial pathogens may vary with cell type, and in epithelial tissues may further differ between plasma membrane domains.


Sign in / Sign up

Export Citation Format

Share Document