Faculty Opinions recommendation of Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana.

Author(s):  
Eric Lam
2006 ◽  
Vol 104 (2) ◽  
pp. 672-677 ◽  
Author(s):  
C. Laloi ◽  
M. Stachowiak ◽  
E. Pers-Kamczyc ◽  
E. Warzych ◽  
I. Murgia ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 178
Author(s):  
Ana L. Villagómez-Aranda ◽  
Luis F. García-Ortega ◽  
Irineo Torres-Pacheco ◽  
Ramón G. Guevara-González

Epigenetic regulation is a key component of stress responses, acclimatization and adaptation processes in plants. DNA methylation is a stable mark plausible for the inheritance of epigenetic traits, such that it is a potential scheme for plant breeding. However, the effect of modulators of stress responses, as hydrogen peroxide (H2O2), in the methylome status has not been elucidated. A transgenic tobacco model to the CchGLP gene displayed high H2O2 endogen levels correlated with biotic and abiotic stresses resistance. The present study aimed to determine the DNA methylation status changes in the transgenic model to obtain more information about the molecular mechanism involved in resistance phenotypes. The Whole-genome bisulfite sequencing analysis revealed a minimal impact of overall levels and distribution of methylation. A total of 9432 differential methylated sites were identified in distinct genome regions, most of them in CHG context, with a trend to hypomethylation. Of these, 1117 sites corresponded to genes, from which 83 were also differentially expressed in the plants. Several genes were associated with respiration, energy, and calcium signaling. The data obtained highlighted the relevance of the H2O2 in the homeostasis of the system in stress conditions, affecting at methylation level and suggesting an association of the H2O2 in the physiological adaptation to stress functional linkages may be regulated in part by DNA methylation.


Sign in / Sign up

Export Citation Format

Share Document