Faculty Opinions recommendation of Marine reserves: size and age do matter.

Author(s):  
John Pandolfi
Keyword(s):  
2020 ◽  
Vol 655 ◽  
pp. 139-155
Author(s):  
DC Yates ◽  
SI Lonhart ◽  
SL Hamilton

Marine reserves are often designed to increase density, biomass, size structure, and biodiversity by prohibiting extractive activities. However, the recovery of predators following the establishment of marine reserves and the consequent cessation of fishing may have indirect negative effects on prey populations by increasing prey mortality. We coupled field surveys with empirical predation assays (i.e. tethering experiments) inside and outside of 3 no-take marine reserves in kelp forests along the central California coast to quantify the strength of interactions between predatory fishes and their crustacean prey. Results indicated elevated densities and biomass of invertebrate predators inside marine reserves compared to nearby fished sites, but no significant differences in prey densities. The increased abundance of predators inside marine reserves translated to a significant increase in mortality of 2 species of decapod crustaceans, the dock shrimp Pandalus danae and the cryptic kelp crab Pugettia richii, in tethering experiments. Shrimp mortality rates were 4.6 times greater, while crab mortality rates were 7 times greater inside reserves. For both prey species, the time to 50% mortality was negatively associated with the density and biomass of invertebrate predators (i.e. higher mortality rates where predators were more abundant). Video analyses indicated that macro-invertivore fishes arrived 2 times faster to tethering arrays at sites inside marine reserves and began attacking tethered prey more rapidly. The results indicate that marine reserves can have direct and indirect effects on predators and their prey, respectively, and highlight the importance of considering species interactions in making management decisions.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Diana E. LaScala‐Gruenewald ◽  
Roger V. Grace ◽  
Tim R. Haggitt ◽  
Benjamin J. Hanns ◽  
Shane Kelly ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Peter J. Mumby ◽  
Robert S. Steneck ◽  
George Roff ◽  
Valerie J. Paul

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nur Arafeh-Dalmau ◽  
Kyle C. Cavanaugh ◽  
Hugh P. Possingham ◽  
Adrian Munguia-Vega ◽  
Gabriela Montaño-Moctezuma ◽  
...  

AbstractKelp forests are globally important and highly productive ecosystems, yet their persistence and protection in the face of climate change and human activity are poorly known. Here, we present a 35-year time series of high-resolution satellite imagery that maps the distribution and persistence of giant kelp (Macrocystis pyrifera) forests along ten degrees of latitude in the Northeast Pacific Ocean. We find that although 7.7% of giant kelp is protected by marine reserves, when accounting for persistence only 4% of kelp is present and protected. Protection of giant kelp decreases southerly from 20.9% in Central California, USA, to less than 1% in Baja California, Mexico, which likely exacerbates kelp vulnerability to marine heatwaves in Baja California. We suggest that a two-fold increase in the area of kelp protected by marine reserves is needed to fully protect persistent kelp forests and that conservation of climate-refugia in Baja California should be a priority.


Sign in / Sign up

Export Citation Format

Share Document