scholarly journals Faculty Opinions recommendation of Identification of direct transcriptional targets of the Kaposi's sarcoma-associated herpesvirus Rta lytic switch protein by conditional nuclear localization.

Author(s):  
Patrick S Moore
2008 ◽  
Vol 82 (21) ◽  
pp. 10709-10723 ◽  
Author(s):  
Wei Bu ◽  
Diana Palmeri ◽  
Raghu Krishnan ◽  
Roxana Marin ◽  
Virginie M. Aris ◽  
...  

ABSTRACT Lytic reactivation from latency is critical for the pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). We previously demonstrated that the 691-amino-acid (aa) KSHV Rta transcriptional transactivator is necessary and sufficient to reactivate the virus from latency. Viral lytic cycle genes, including those expressing additional transactivators and putative oncogenes, are induced in a cascade fashion following Rta expression. In this study, we sought to define Rta's direct targets during reactivation by generating a conditionally nuclear variant of Rta. Wild-type Rta protein is constitutively localized to cell nuclei and contains two putative nuclear localization signals (NLSs). Only one NLS (NLS2; aa 516 to 530) was required for the nuclear localization of Rta, and it relocalized enhanced green fluorescent protein exclusively to cell nuclei. The results of analyses of Rta NLS mutants demonstrated that proper nuclear localization of Rta was required for transactivation and the stimulation of viral reactivation. RTA with NLS1 and NLS2 deleted was fused to the hormone-binding domain of the murine estrogen receptor to generate an Rta variant whose nuclear localization and ability to transactivate and induce reactivation were tightly controlled posttranslationally by the synthetic hormone tamoxifen. We used this strategy in KSHV-infected cells treated with protein synthesis inhibitors to identify direct transcriptional targets of Rta. Rta activated only eight KSHV genes in the absence of de novo protein synthesis. These direct transcriptional targets of Rta were transactivated to different levels and included the genes nut-1/PAN, ORF57/Mta, ORF56/Primase, K2/viral interleukin-6 (vIL-6), ORF37/SOX, K14/vOX, K9/vIRF1, and ORF52. Our data suggest that the induction of most of the KSHV lytic cycle genes requires additional protein expression after the expression of Rta.


2008 ◽  
Vol 83 (6) ◽  
pp. 2531-2539 ◽  
Author(s):  
Xiaojuan Li ◽  
Fanxiu Zhu

ABSTRACT Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus 8 (KSHV) is an immediate-early phosphorylated tegument protein and has been shown to play important roles at both early and late stages of viral infection. Homologues of ORF45 exist only in gammaherpesviruses, and their homology is limited. These homologues differ in their protein lengths and subcellular localizations. We and others have reported that KSHV ORF45 is localized predominantly in the cytoplasm, whereas its homologue in murine herpesvirus 68 is localized exclusively in the nucleus. We observed that ORF45s of rhesus rhadinovirus and herpesvirus saimiri are found exclusively in the nucleus. As a first step toward understanding the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we identified the signals that control its subcellular localization. We found that KSHV ORF45 accumulated rapidly in the nucleus in the presence of leptomycin B, an inhibitor of CRM1 (exportin 1)-dependent nuclear export, suggesting that it could shuttle between the nucleus and cytoplasm. Mutational analysis revealed that KSHV ORF45 contains a CRM1-dependent, leucine-rich-like nuclear export signal and an adjacent nuclear localization signal. Replacement of the key residues with alanines in these motifs of ORF45 disrupts its shuttling between the cytoplasm and nucleus. The resulting ORF45 mutants have restricted subcellular localizations, being found exclusively either in the cytoplasm or in the nucleus. Recombinant viruses were reconstituted by introduction of these mutations into KSHV bacterial artificial chromosome BAC36. The resultant viruses have distinct phenotypes. A mutant virus in which ORF45 is restricted to the cytoplasm behaves as an ORF45-null mutant and produces 5- to 10-fold fewer progeny viruses than the wild type. In contrast, mutants in which the ORF45 protein is mostly restricted to the nucleus produce numbers of progeny viruses similar to those produced by the wild type. These data suggest that the subcellular localization signals of ORF45 have important functional roles in KSHV lytic replication.


2003 ◽  
Vol 77 (18) ◽  
pp. 9758-9768 ◽  
Author(s):  
Hong-Yi Pan ◽  
Yan-Jin Zhang ◽  
Xin-Ping Wang ◽  
Jian-Hong Deng ◽  
Fu-Chun Zhou ◽  
...  

ABSTRACT The latent nuclear antigen (LNA) of Kaposi's sarcoma-associated herpesvirus (KSHV) has an essential role in viral latent infection. LNA maintains the stability of KSHV episomes and modulates the expression of cellular genes. A novel cellular protein KLIP1 was identified to interact with LNA through yeast two-hybrid screening, and confirmed by a glutathione S-transferase pull down assay. Domain mapping showed that KLIP1 interacted with the N-terminal domain of LNA. Northern blot hybridization with a KLIP1 probe identified a major transcript of 1.8 kb and a minor transcript of 2.8 kb. cDNA library screening and 5′-RACE revealed that the major transcript encoded an open-reading-frame of 1,257 bp and had a 5′-untranslated region of 73 nucleotides. The major KLIP1 transcript was ubiquitously present in different cell types examined. A KLIP1 synthetic peptide antibody detected a doublet of 58-kDa and 63-kDa proteins in a Western blot assay. KLIP1 had two putative nuclear localization signals and showed punctate nuclear localization when expressed as a GFP-fusion protein. KLIP1 interacted with LNA in vivo, as demonstrated by coimmunoprecipitation using KSHV-infected cells and colocalization when they were expressed as GFP- and DsRed-fusion proteins, respectively. Consistent with its interaction with LNA, nuclear localization, and possession of two leucine zipper motifs, KLIP1 behaved like a transcriptional factor and repressed herpes simplex virus thymidine kinase (TK) promoter activity in a mammalian one-hybrid assay. In addition, cotransfection with LNA alleviated the transcriptional repression effect of KLIP1 on TK promoter activity. These results suggest that KLIP1 is a new member of cellular transcriptional repressors, and that LNA is involved in deregulating cellular transcription process.


2003 ◽  
Vol 374 (2) ◽  
pp. 545-550 ◽  
Author(s):  
Cesar MUÑOZ-FONTELA ◽  
Estefanía RODRÍGUEZ ◽  
Cesar NOMBELA ◽  
Javier ARROYO ◽  
Carmen RIVAS

LANA2 is a nuclear latent protein detected exclusively in Kaposi's sarcoma-associated herpesvirus-infected B cells. The protein inhibits p53-dependent transactivation and apoptosis, suggesting an important role in the transforming activity of the virus. To explore the molecular mechanisms of its nuclear localization, fusion proteins of green fluorescent protein (EGFP) and deletion constructs of LANA2 were expressed in HeLa cells. Only the fragment comprising amino acid residues 355–440 of LANA2 localized in the cell nucleus. This fragment contains two closely located basic domains and forms a putative bipartite nuclear localization signal (NLS). The putative LANA2 NLS was able to target EGFP to the nucleus consistently. Site-directed mutation analyses demonstrated that LANA2 contains a functional bipartite NLS between amino acid positions 367 and 384. In addition, analysis of cells transfected with a cytoplasmic LANA2 mutant revealed that an appropriate subcellular localization may be crucial to regulate p53 activity.


2017 ◽  
Vol 91 (24) ◽  
Author(s):  
H. Jacques Garrigues ◽  
Kellie Howard ◽  
Serge Barcy ◽  
Minako Ikoma ◽  
Ashlee V. Moses ◽  
...  

ABSTRACT The latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) performs a variety of functions to establish and maintain KSHV latency. During latency, LANA localizes to discrete punctate spots in the nucleus, where it tethers viral episomes to cellular chromatin and interacts with nuclear components to regulate cellular and viral gene expression. Using highly sensitive tyramide signal amplification, we determined that LANA localizes to the cytoplasm in different cell types undergoing the lytic cycle of replication after de novo primary infection and after spontaneous, tetradecanoyl phorbol acetate-, or open reading frame 50 (ORF50)/replication transactivator (RTA)-induced activation. We confirmed the presence of cytoplasmic LANA in a subset of cells in lytically active multicentric Castleman disease lesions. The induction of cellular migration by scratch-wounding confluent cell cultures, culturing under subconfluent conditions, or induction of cell differentiation in primary cultures upregulated the number of cells permissive for primary lytic KSHV infection. The induction of lytic replication was characterized by high-level expression of cytoplasmic LANA and nuclear ORF59, a marker of lytic replication. Subcellular fractionation studies revealed the presence of multiple isoforms of LANA in the cytoplasm of ORF50/RTA-activated Vero cells undergoing primary infection. Mass spectrometry analysis demonstrated that cytoplasmic LANA isoforms were full length, containing the N-terminal nuclear localization signal. These results suggest that trafficking of LANA to different subcellular locations is a regulated phenomenon, which allows LANA to interact with cellular components in different compartments during both the latent and the replicative stages of the KSHV life cycle. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) causes AIDS-related malignancies, including lymphomas and Kaposi's sarcoma. KSHV establishes lifelong infections using its latency-associated nuclear antigen (LANA). During latency, LANA localizes to the nucleus, where it connects viral and cellular DNA complexes and regulates gene expression, allowing the virus to maintain long-term infections. Our research shows that intact LANA traffics to the cytoplasm of cells undergoing permissive lytic infections and latently infected cells in which the virus is induced to replicate. This suggests that LANA plays important roles in the cytoplasm and nuclear compartments of the cell during different stages of the KSHV life cycle. Determining cytoplasmic function and mechanism for regulation of the nuclear localization of LANA will enhance our understanding of the biology of this virus, leading to therapeutic approaches to eliminate infection and block its pathological effects.


Sign in / Sign up

Export Citation Format

Share Document