Faculty Opinions recommendation of Systems genetics of complex traits in Drosophila melanogaster.

Author(s):  
Andy Groves
2009 ◽  
Vol 41 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Julien F Ayroles ◽  
Mary Anna Carbone ◽  
Eric A Stone ◽  
Katherine W Jordan ◽  
Richard F Lyman ◽  
...  

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2644 ◽  
Author(s):  
William P. Gilks ◽  
Tanya M. Pennell ◽  
Ilona Flis ◽  
Matthew T. Webster ◽  
Edward H. Morrow

As part of a study into the molecular genetics of sexually dimorphic complex traits, we used next-generation sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly (Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LHM). The use of a static and known genetic background enabled us to obtain sequences from whole genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics (https://zenodo.org/communities/sussex_drosophila_sequencing/).


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2644 ◽  
Author(s):  
William P. Gilks ◽  
Tanya M. Pennell ◽  
Ilona Flis ◽  
Matthew T. Webster ◽  
Edward H. Morrow

As part of a study into the molecular genetics of sexually dimorphic complex traits, we used high-throughput sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly (Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LHM). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics (https://zenodo.org/communities/sussex_drosophila_sequencing/).


2020 ◽  
Vol 126 (12) ◽  
pp. 1795-1815 ◽  
Author(s):  
Christoph D. Rau ◽  
Aldons J. Lusis ◽  
Yibin Wang

Cardiovascular diseases are the leading cause of death worldwide. Complex diseases with highly heterogenous disease progression among patient populations, cardiovascular diseases feature multifactorial contributions from both genetic and environmental stressors. Despite significant effort utilizing multiple approaches from molecular biology to genome-wide association studies, the genetic landscape of cardiovascular diseases, particularly for the nonfamilial forms of heart failure, is still poorly understood. In the past decade, systems-level approaches based on omics technologies have become an important approach for the study of complex traits in large populations. These advances create opportunities to integrate genetic variation with other biological layers to identify and prioritize candidate genes, understand pathogenic pathways, and elucidate gene-gene and gene-environment interactions. In this review, we will highlight some of the recent progress made using systems genetics approaches to uncover novel mechanisms and molecular bases of cardiovascular pathophysiological manifestations. The key technology and data analysis platforms necessary to implement systems genetics will be described, and the current major challenges and future directions will also be discussed. For complex cardiovascular diseases, such as heart failure, systems genetics represents a powerful strategy to obtain mechanistic insights and to develop individualized diagnostic and therapeutic regiments, paving the way for precision cardiovascular medicine.


Cell Systems ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 5-22
Author(s):  
Jeffrey Molendijk ◽  
Benjamin L. Parker

BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 297 ◽  
Author(s):  
Patricia Jumbo-Lucioni ◽  
Julien F Ayroles ◽  
Michelle Chambers ◽  
Katherine W Jordan ◽  
Jeff Leips ◽  
...  

Evolution ◽  
2020 ◽  
Vol 74 (12) ◽  
pp. 2703-2713 ◽  
Author(s):  
Katrine K. Lund‐Hansen ◽  
Jessica K. Abbott ◽  
Edward H. Morrow

Sign in / Sign up

Export Citation Format

Share Document