Faculty Opinions recommendation of Visualizing B cell capture of cognate antigen from follicular dendritic cells.

Author(s):  
E Charles Snow
2009 ◽  
Vol 206 (7) ◽  
pp. 1485-1493 ◽  
Author(s):  
Kazuhiro Suzuki ◽  
Irina Grigorova ◽  
Tri Giang Phan ◽  
Lisa M. Kelly ◽  
Jason G. Cyster

The prominent display of opsonized antigen by follicular dendritic cells (FDCs) has long favored the view that they serve as antigen-presenting cells for B cells. Surprisingly, however, although B cell capture of antigen from macrophages and dendritic cells has been visualized, acquisition from FDCs has not been directly observed. Using two-photon microscopy, we visualized B cell capture of cognate antigen from FDCs. B cell CXCR5 expression was required, and encounter with FDC-associated antigen could be detected for >1 wk after immunization. B cell–FDC contact times were often brief but occasionally persisted for >30 min, and B cells sometimes acquired antigen together with FDC surface proteins. These observations establish that FDCs can serve as sites of B cell antigen capture, with their prolonged display time ensuring that even rare B cells have the chance of antigen encounter, and they suggest possible information transfer from antigen-presenting cell to B cell.


2000 ◽  
Vol 192 (7) ◽  
pp. 931-942 ◽  
Author(s):  
Lynn G. Hannum ◽  
Ann M. Haberman ◽  
Shannon M. Anderson ◽  
Mark J. Shlomchik

Serum antibody (Ab) can play several roles during B cell immune responses. Among these is to promote the deposition of immune complexes (ICs) on follicular dendritic cells (FDCs). ICs on FDCs are generally thought to be critical for normal germinal center (GC) formation and the development and selection of memory B cells. However, it has been very difficult to test these ideas. To determine directly whether FDC-bound complexes do indeed function in these roles, we have developed a transgenic (Tg) mouse in which all B lymphocytes produce only the membrane-bound form of immunoglobulin M. Immune Tg mice have 10,000-fold less specific Ab than wild-type mice and lack detectable ICs on FDCs. Nonetheless, primary immune responses and the GC reaction in these mice are robust, suggesting that ICs on FDCs do not play critical roles in immune response initiation and GC formation. Moreover, as indicated by the presence and pattern of somatic mutations, memory cell formation and selection appear normal in these IC-deficient GCs.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 4989-4997 ◽  
Author(s):  
Marc Bajénoff ◽  
Ronald N. Germain

Abstract Afferent lymph is transported throughout lymph nodes (LNs) by the conduit system. Whereas this conduit network is dense in the T-cell zone, it is sparse in B-cell follicles. In this study, we show that this differential organization emerges during lymph node development. Neonatal LNs lack B follicles, but have a developed T-cell zone and a dense conduit network. As new T and B cells enter the developing LN, the conduit network density is maintained in the T, but not the B zone, leading to a profound remodeling of the follicular network that nevertheless maintains its connectivity. In adults, the residual follicular conduits transport soluble antigen to deep regions, where follicular dendritic cells are abundant and appear to replace the fibroblastic reticular cells that enwrap conduits in the T zone. This strategic location correlates with the capacity of the follicular dendritic cells to capture antigen even in the absence of antigen-specific antibodies. Together, these results describe how the stromal organization of the T and B regions of LNs diverges during development, giving rise to distinct antigen transport and delivery modes in the 2 compartments.


2013 ◽  
Vol 4 ◽  
Author(s):  
Heesters Balthasar ◽  
Chatterjee Priyadarshini ◽  
Kim Young-A ◽  
Gonzalez Santiago ◽  
Kuligowski Michael ◽  
...  

2014 ◽  
Vol 4 (12) ◽  
pp. 1448-1465 ◽  
Author(s):  
Kristina Heinig ◽  
Marcel Gätjen ◽  
Michael Grau ◽  
Vanessa Stache ◽  
Ioannis Anagnostopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document