Faculty Opinions recommendation of Oxidation of methane by a biological dicopper centre.

Author(s):  
Angela Wilks
Keyword(s):  
Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


2010 ◽  
Vol 489 (1) ◽  
pp. 316-323 ◽  
Author(s):  
Ana C. Ferreira ◽  
A.M. Ferraria ◽  
A.M. Botelho do Rego ◽  
António P. Gonçalves ◽  
M. Rosário Correia ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2495
Author(s):  
Daniela Pietrogiacomi ◽  
Maria Cristina Campa ◽  
Ida Pettiti ◽  
Simonetta Tuti ◽  
Giulia Luccisano ◽  
...  

Ni/ZrO2 catalysts, active and selective for the catalytic partial oxidation of methane to syngas (CH4-CPO), were prepared by the dry impregnation of zirconium oxyhydroxide (Zhy) or monoclinic ZrO2 (Zm), calcination at 1173 K and activation by different procedures: oxidation-reduction (ox-red) or direct reduction (red). The characterization included XRD, FESEM, in situ FTIR and Raman spectroscopies, TPR, and specific surface area measurements. Catalytic activity experiments were carried out in a flow apparatus with a mixture of CH4:O2 = 2:1 in a short contact time. Compared to Zm, Zhy favoured the formation of smaller NiO particles, implying a higher number of Ni sites strongly interacting with the support. In all the activated Ni/ZrO2 catalysts, the Ni–ZrO2 interaction was strong enough to limit Ni aggregation during the catalytic runs. The catalytic activity depended on the activation procedures; the ox-red treatment yielded very active and stable catalysts, whereas the red treatment yielded catalysts with oscillating activity, ascribed to the formation of Niδ+ carbide-like species. The results suggested that Ni dispersion was not the main factor affecting the activity, and that active sites for CH4-CPO could be Ni species at the boundary of the metal particles in a specific configuration and nuclearity.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 459
Author(s):  
Johannes Becher ◽  
Sebastian Weber ◽  
Dario Ferreira Sanchez ◽  
Dmitry E. Doronkin ◽  
Jan Garrevoet ◽  
...  

Structure–activity relations in heterogeneous catalysis can be revealed through in situ and operando measurements of catalysts in their active state. While hard X-ray tomography is an ideal method for non-invasive, multimodal 3D structural characterization on the micron to nm scale, performing tomography under controlled gas and temperature conditions is challenging. Here, we present a flexible sample environment for operando hard X-ray tomography at synchrotron radiation sources. The setup features are discussed, with demonstrations of operando powder X-ray diffraction tomography (XRD-CT) and energy-dispersive tomographic X-ray absorption spectroscopy (ED-XAS-CT). Catalysts for CO2 methanation and partial oxidation of methane are shown as case studies. The setup can be adapted for different hard X-ray microscopy, spectroscopy, or scattering synchrotron radiation beamlines, is compatible with absorption, diffraction, fluorescence, and phase-contrast imaging, and can operate with scanning focused beam or full-field acquisition mode. We present an accessible methodology for operando hard X-ray tomography studies, which offer a unique source of 3D spatially resolved characterization data unavailable to contemporary methods.


Sign in / Sign up

Export Citation Format

Share Document