Faculty Opinions recommendation of An unprecedented nucleic acid capture mechanism for excision of DNA damage.

Author(s):  
Mark Glover
Nature ◽  
2010 ◽  
Vol 468 (7322) ◽  
pp. 406-411 ◽  
Author(s):  
Emily H. Rubinson ◽  
A. S. Prakasha Gowda ◽  
Thomas E. Spratt ◽  
Barry Gold ◽  
Brandt F. Eichman

2016 ◽  
Vol 114 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Bret D. Wallace ◽  
Zachary Berman ◽  
Geoffrey A. Mueller ◽  
Yunfeng Lin ◽  
Timothy Chang ◽  
...  

The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3′-5′ nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3′-5′ exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.


2021 ◽  
Vol 12 ◽  
Author(s):  
Clara Taffoni ◽  
Alizée Steer ◽  
Johanna Marines ◽  
Hanane Chamma ◽  
Isabelle K. Vila ◽  
...  

The maintenance of genomic stability in multicellular organisms relies on the DNA damage response (DDR). The DDR encompasses several interconnected pathways that cooperate to ensure the repair of genomic lesions. Besides their repair functions, several DDR proteins have emerged as involved in the onset of inflammatory responses. In particular, several actors of the DDR have been reported to elicit innate immune activation upon detection of cytosolic pathological nucleic acids. Conversely, pattern recognition receptors (PRRs), initially described as dedicated to the detection of cytosolic immune-stimulatory nucleic acids, have been found to regulate DDR. Thus, although initially described as operating in specific subcellular localizations, actors of the DDR and nucleic acid immune sensors may be involved in interconnected pathways, likely influencing the efficiency of one another. Within this mini review, we discuss evidences for the crosstalk between PRRs and actors of the DDR. For this purpose, we mainly focus on cyclic GMP-AMP (cGAMP) synthetase (cGAS) and Interferon Gamma Inducible Protein 16 (IFI16), as major PRRs involved in the detection of aberrant nucleic acid species, and components of the DNA-dependent protein kinase (DNA-PK) complex, involved in the repair of double strand breaks that were recently described to qualify as potential PRRs. Finally, we discuss how the crosstalk between DDR and nucleic acid-associated Interferon responses cooperate for the fine-tuning of innate immune activation, and therefore dictate pathological outcomes. Understanding the molecular determinants of such cooperation will be paramount to the design of future therapeutic approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Nicholas J. Amato ◽  
Christopher N. Mwai ◽  
Timothy C. Mueser ◽  
Amanda C. Bryant-Friedrich

Damaged DNA, generated by the abstraction of one of five hydrogen atoms from the 2′-deoxyribose ring of the nucleic acid, can contain a variety of lesions, some of which compromise physiological processes. Recently, DNA damage, resulting from the formation of a C3′-thymidinyl radical in DNA oligomers, was found to be dependent on nucleic acid structure. Architectures relevant to DNA replication were observed to generate larger amounts of strand-break and 1-(2′-deoxy-β-D-threo-pentofuranosyl)thymidine formation than that observed for duplex DNA. To understand how this damage can affect the integrity of DNA, the impact of C3′-thymidinyl radical derived lesions on DNA stability and structure was characterized using biophysical methods. DNA architectures evaluated include duplex DNA (dsDNA), single 3′ or 5′-overhangs (OvHgs), and forks. Thermal melting analysis and differential scanning calorimetry measurements indicate that an individual 3′-OvHg is more destabilizing than a 5′-OvHg. The presence of a terminal 3′ or 5′ phosphate decreases theΔG25to the same extent, while the effect of the phosphate at the ss-dsDNA junction of OvHgs is dependent on sequence. Additionally, the effect of 1-(2′-deoxy-β-D-threo-pentofuranosyl)thymidine is found to depend on DNA architecture and proximity to the 3′ end of the damaged strand.


2014 ◽  
Vol 114 (8) ◽  
pp. 4602-4620 ◽  
Author(s):  
Guanqun Zheng ◽  
Ye Fu ◽  
Chuan He

2011 ◽  
Vol 76 (12) ◽  
pp. 1799-1810 ◽  
Author(s):  
Emil Paleček

First papers on electroactivity of DNA and RNA were published more then 50 years ago. For about 8 years oscillographic polarography at controlled a.c. (OP, proposed by J. Heyrovský already in 1941) was the method of choice for DNA analysis. Since approximately 1954 Robert Kalvoda developed OP for wide application in various fields. It is shown that already before 1960 it was possible to detect damage to DNA in X-ray-irradiated rats by means of OP. DNA samples from irradiated animals produced significantly larger OP anodic guanine signal indicating changes in the DNA structure. At present, radiation-induced strand breaks and damage to bases in DNA can be electrochemically detected at high sensitivity.


1993 ◽  
Vol 14 (8) ◽  
pp. 1523-1529 ◽  
Author(s):  
Kurt Randerath ◽  
Krishna P. Gupta ◽  
Kenneth L. van Golen

Sign in / Sign up

Export Citation Format

Share Document