Faculty Opinions recommendation of Manganese neurotoxicity: new perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates.

Author(s):  
Michael Aschner
2019 ◽  
Vol 56 ◽  
pp. 146-155 ◽  
Author(s):  
Omamuyovwi M. Ijomone ◽  
Oritoke M. Aluko ◽  
Comfort O.A. Okoh ◽  
Airton Cunha Martins ◽  
Michael Aschner

1982 ◽  
Vol 60 (11) ◽  
pp. 1398-1405 ◽  
Author(s):  
John Donaldson ◽  
Duncan McGregor ◽  
Frank LaBella

In man, manganese neurointoxication is characterised in the early phase by bizarre behavior reminiscent of that observed in schizophrenia. During chronic manganese intoxication the neuropsychiatric symptoms manifested earlier disappear and are followed by a permanent neurological phase typified by extrapyramidal symptoms similar to those of Parkinson's disease. Study of manganese intoxication in animals may provide important clues towards elucidation of the biochemical defect underlying neuropsychiatric as well as extrapyramidal diseases. Investigations in our laboratory suggest that neurotoxicity of manganese is an exaggeration of function in normal neuronal homeostasis. Manganese neurointoxication in neonatal rats resulted in significant depression of lipid peroxidation in several rat brain regions examined. In the striatum, lipid peroxidative activity was abolished, an effect which may be related to alteration in neurotransmitters often observed in the striatum of manganese-treated rats. The chronic, extrapyramidal stage of manganism, may ensue when excess Mn2+ is oxidised to higher valency forms where it can potentiate the autoxidation of catecholamines, like dopamine, resulting in concomitant formation of free radicals and cytotoxic quinones. This latter effect may arise preferentially in the substantia nigra, where neuromelanin is formed nonenzymatically by autoxidation of dopamine.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Prashant Tarale ◽  
Tapan Chakrabarti ◽  
Saravanadevi Sivanesan ◽  
Pravin Naoghare ◽  
Amit Bafana ◽  
...  

Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson’s disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson’s disease is characterized by theα-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression ofα-synuclein.α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis.α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson’s disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson’s disease.


2006 ◽  
Vol 27 (5) ◽  
pp. 798-806 ◽  
Author(s):  
Vanessa A. Fitsanakis ◽  
Na Zhang ◽  
Malcolm J. Avison ◽  
John C. Gore ◽  
Judy L. Aschner ◽  
...  

2013 ◽  
Vol 62 ◽  
pp. 65-75 ◽  
Author(s):  
Ebany J. Martinez-Finley ◽  
Claire E. Gavin ◽  
Michael Aschner ◽  
Thomas E. Gunter

Sign in / Sign up

Export Citation Format

Share Document