Faculty Opinions recommendation of UNC5B receptor deletion exacerbates tissue injury in response to AKI.

Author(s):  
Christos Chatziantoniou ◽  
Christos Chadjichristos
Keyword(s):  
Author(s):  
K. Kovacs ◽  
E. Horvath ◽  
J. M. Bilbao ◽  
F. A. Laszlo ◽  
I. Domokos

Electrolytic lesions of the pituitary stalk in rats interrupt adenohypophysial blood flow and result in massive infarction of the anterior lobe. In order to obtain a deeper insight into the morphogenesis of tissue injury and to reveal the sequence of events, a fine structural investigation was undertaken on adenohypophyses of rats at various intervals following destruction of the pituitary stalk.The pituitary stalk was destroyed electrolytically, with a Horsley-Clarke apparatus on 27 male rats of the R-Amsterdam strain, weighing 180-200 g. Thirty minutes, 1,2,4,6 and 24 hours after surgery the animals were perfused with a glutaraldehyde-formalin solution. The skulls were then opened and the pituitary glands removed. The anterior lobes were fixed in glutaraldehyde-formalin solution, postfixed in osmium tetroxide and embedded in Durcupan. Ultrathin sections were stained with uranyl acetate and lead citrate and investigated with a Philips 300 electron microscope.


2005 ◽  
Vol 173 (4S) ◽  
pp. 300-301
Author(s):  
Michaella E. Maloney ◽  
Pei Zhong ◽  
Charles G. Marguet ◽  
Yufeng F. Zhou ◽  
Jeffrey C. Sung ◽  
...  

1973 ◽  
Vol 29 (01) ◽  
pp. 076-086 ◽  
Author(s):  
Uri Seligsohn ◽  
Samuel I. Rapaport ◽  
Ariella Zivelin

SummaryRabbits were injected with 75Se-Methionine (75SeM) 4-8 hr after being subjected to a variety of experimental conditions: injection of ACTH, growth hormone, glucagon, adrenalin, endotoxin, turpentine, hydrocortisone and laparotomy. All of these experimental conditions except injection of glucagon were associated with increased incorporation of 75SeM into fibrinogen. Three patterns of incorporation of 75SeM into plasma proteins were recognized: 1. the pituitary pattern, which was observed in animals injected with ACTH, growth hormone or endotoxin, and which was characterized by increased incorporation of 75SeM only into fibrinogen and by a delayed incorporation of 75SeM into α2 and β1 globulins; 2. the tissue injury pattern, which was characterized by a markedly increased incorporation of 75SeM into fibrinogen and no alteration in incorporation of 75SeM into α2 or β1 globulins; and 3. the pharmacologic corticosteroid pattern, which was characterized by a moderately increased incorporation of 75SeM into fibrinogen and a strikingly increased incorporation of 75SeM into α2 and β1 globulins.


1977 ◽  
Vol 38 (04) ◽  
pp. 0823-0830 ◽  
Author(s):  
Mayrovttz N. Harvey ◽  
Wiedeman P. Mary ◽  
Ronald F. Tuma

SummaryIn vivo studies of the microcirculation of an untraumatized and unanesthetized animal preparation has shown that leukocyte adherence to vascular endothelium is an extremely rare occurrence. Induction of leukocyte adherence can be produced in a variety of ways including direct trauma to the vessels, remote tissue injury via laser irradiation, and denuding the epithelium overlying the observed vessels. The role of blood flow and local hemodynamics on the leukocyte adherence process is quite complex and still not fully understood. From the results reported it may be concluded that blood flow stasis will not produce leukocyte adherence but will augment pre-existing adherence. Studies using 2 quantitative measures of adherence, leukocyte flux and leukocyte velocity have shown these parameters to be affected differently by local hemodynamics. Initial adherence appears to be critically dependent on the magnitude of the blood shear stress at the vessel wall as evidenced by the lack of observable leukocyte flux above some threshold value. Subsequent behavior of the leukocytes as characterized by their average rolling velocity shows no apparent relationship to shear stress but, for low velocities, may be related to the linear blood velocity.


2005 ◽  
Author(s):  
Alamelu Sundaresan (Lalita) ◽  
Anil D. Kulkarni ◽  
Keiko Yamauchi ◽  
Neal R. Pellis
Keyword(s):  

Author(s):  
Deshkar S. S. ◽  
Pore A. R.

Platelets play an important role in hemostasis during tissue injury, which blocks the defect and terminates blood loss. Platelet aggregation inhibitors are widely used in treatment of cardiovascular disorders and Peripheral arterial disease. Clopidogrel bisulphate and Cilostazol, are FDA approved BCS class II drugs, used in treatment of Platelet aggregation, peripheral arterial disease and intermittent claudication. The aim of the present study was to develop an immediate release pellets for combination of Clopidogrel bisulphate and Cilostazol using extrusion spheronization technique. The effects of spheronization speed(X1) and binder concentration (PVP K30) (X2), on size of pellets, disintegration time and drug release were studied using 32 full factorial design. The surface response and counter plot were drawn to facilitate an understanding of the contribution of the variables and their interaction. From the results, speed of spheronization of 1100 rpm and 5% concentration of PVP K30, were selected. In vitro drug release studies revealed more than 80% of clopidogrel bisulphate release and more than 75% of cilostazol release within 30 min of dissolution which complied with the pharmacopoeal limits. Film coated pellets did not show significant change in the drug release. DSC and FTIR studies revealed no interaction of drugs and excipient during pellet formulation. The pellet formulations of clopidogrel and cilostazol were found to be stable when stored at 40ºC±2ºC/ 75%RH±5%RH for 2 months. Conclusively, clopidogrel bisulphate and cilostazol pellet fixed dose combination could be successfully developed by design of experimentation and complied with pharmacopoeal limits.


2019 ◽  
Vol 72 (8) ◽  
pp. 1473-1476
Author(s):  
Nataliya Matolinets ◽  
Helen Sklyarova ◽  
Eugene Sklyarov ◽  
Andrii Netliukh

Introduction: Polytrauma patients have high risk of shock, septic complications and death during few years of follow-up. In recent years a lot of attention is paid to gaseous transmitters, among which are nitrogen oxide (NO) and hydrogen sulfide (H2S). It is known that the rise of NO and its metabolites levels occurs during the acute period of polytrauma. Nitric oxide and hydrogen sulfide are produced in different cell types, among which are lymphocytes. The aim: To investigate the levels of NO, NOS, iNOS, еNOS, H2S in lymphocytes lysate in patients at the moment of hospitalization and 24 hours after trauma. Materials and methods: We investigated the levels of NO, NO-synthase, inducible NO-synthase, endothelial NO-synthase, H2S in lymphocytes lysate in patients at the moment of hospitalization and 24 hours after trauma. Results: The study included 20 patients with polytrauma who were treated in the intensive care unit (ICU) of the Lviv Emergency Hospital. Tissue injury was associated with an increased production of NO, NOS, iNOS, еNOS during the acute period of polytrauma. At the same time, the level of H2S decreased by the end of the first day of traumatic injury. Conclusions: In acute period of polytrauma, significant increasing of iNOS and eNOS occurs with percentage prevalence of iNOS over eNOS on the background of H2S decreasing.


Sign in / Sign up

Export Citation Format

Share Document