Faculty Opinions recommendation of Activation of extracellular transglutaminase 2 by thioredoxin.

Author(s):  
Alexey Belkin
Keyword(s):  
2021 ◽  
Vol 542 ◽  
pp. 17-23
Author(s):  
Emi Aonuma ◽  
Akiko Tamura ◽  
Hiroki Matsuda ◽  
Takehito Asakawa ◽  
Yuriko Sakamaki ◽  
...  

Author(s):  
Xiao Lei ◽  
Kun Cao ◽  
Yuanyuan Chen ◽  
Hui Shen ◽  
Zhe Liu ◽  
...  

Abstract Background To block repairs of DNA damages, especially the DNA double strand break (DSB) repair, can be used to induce cancer cell death. DSB repair depends on a sequential activation of DNA repair factors that may be potentially targeted for clinical cancer therapy. Up to now, many protein components of DSB repair complex remain unclear or poorly characterized. In this study, we discovered that Transglutaminase 2 (TG2) acted as a new component of DSB repair complex. Methods A bioinformatic analysis was performed to identify DNA damage relative genes from dataset from The Cancer Genome Atlas. Immunofluorescence and confocal microscopy were used to monitor the protein localization and recruitment kinetics. Furthermore, immunoprecipitation and mass spectrometry analysis were performed to determine protein interaction of both full-length and fragments or mutants in distinct domain. In situ lung cancer model was used to study the effects cancer therapy in vivo. Results After DSB induction, cytoplasmic TG2 was extensively mobilized and translocated into nucleus after phosphorylated at T162 site by DNA-PKcs. Nuclear TG2 quickly accumulated at DSB sites and directly interacting with Topoisomerase IIα (TOPOIIα) with its TGase domain to promote DSB repair. TG2 deficient cells lost capacity of DSB repair and become susceptible to ionizing radiation. Specific inhibition of TG2-TOPOIIα interaction by glucosamine also significantly inhibited DSB repair, which increased sensitivity in lung cancer cells and engrafted lung cancers. Conclusions These findings elucidate new mechanism of TG2 in DSB repair trough directly interacting with TOPOIIα, inhibition of which provided potential target for overcoming cancer resistance.


2021 ◽  
Vol 11 (12) ◽  
pp. 5718
Author(s):  
Nicola Gaetano Gatta ◽  
Andrea Parente ◽  
Francesca Guida ◽  
Sabatino Maione ◽  
Vittorio Gentile

Background: Tissue type 2 transglutaminase (TG2, E.C. 2.3.2,13) is reported to be involved in the phagocytosis of apoptotic cells in mouse microglial BV2 cells and peripheral macrophages. In this study, by using lipopolysaccharide (LPS)- or amyloid-β 1-42 (Aβ 1-42) peptide-stimulated microglial cell line BV2 and mouse primary microglial cells, we examined the effects of different neuronutraceutical compounds, such as curcumin (Cu) and N-Palmitoylethanolamine (PEA), known for their anti-inflammatory activity, on TG2 and several inflammatory or neuroprotective biomarker expressions. Methods: Mouse BV2 cells were treated with LPS or Aβ1-42 in the presence of curcumin or PEA, in order to evaluate the expression of TG2 and other inflammatory or neuroprotective markers using Real Time-PCR and Western blot analyses. Results: Curcumin and PEA were capable of reducing TG2 expression in mouse microglial cells during co-treatment with LPS or Aβ 1-42. Conclusions: The results show the role of TG2 as an important marker of neuroinflammation and suggest a possible use of curcumin and PEA in order to reduce LPS- or Aβ1-42-induced TG2 overexpression in mouse microglial cells.


2009 ◽  
Vol 95 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Filipe C Martins ◽  
Filipa Teixeira ◽  
Ines Reis ◽  
Nuno Geraldes ◽  
AM Silvério Cabrita ◽  
...  

2007 ◽  
Vol 28 (11) ◽  
pp. 1150-1150 ◽  
Author(s):  
O. Porzio ◽  
O. Massa ◽  
V. Cunsolo ◽  
C. Colombo ◽  
M. Malaponti ◽  
...  

2010 ◽  
Vol 14 (9) ◽  
pp. 989-1003 ◽  
Author(s):  
Daniela Caccamo ◽  
Monica Currò ◽  
Riccardo Ientile

Amino Acids ◽  
2016 ◽  
Vol 49 (3) ◽  
pp. 683-693 ◽  
Author(s):  
Chiara Tarquini ◽  
Rosanna Mattera ◽  
Francesca Mastrangeli ◽  
Sara Agostinelli ◽  
Amedeo Ferlosio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document