Faculty Opinions recommendation of The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug.

Author(s):  
Ana Espinel-Ingroff
2014 ◽  
Vol 58 (11) ◽  
pp. 6627-6638 ◽  
Author(s):  
Ana Cecilia Mesa-Arango ◽  
Nuria Trevijano-Contador ◽  
Elvira Román ◽  
Ruth Sánchez-Fresneda ◽  
Celia Casas ◽  
...  

ABSTRACTAmphotericin B (AMB) is an antifungal drug that binds to ergosterol and forms pores at the cell membrane, causing the loss of ions. In addition, AMB induces the accumulation of reactive oxygen species (ROS), and although these molecules have multiple deleterious effects on fungal cells, their specific role in the action mechanism of AMB remains unknown. In this work, we studied the role of ROS in the action mechanism of AMB. We determined the intracellular induction of ROS in 44 isolates of different pathogenic yeast species (Candida albicans,Candida parapsilosis,Candida glabrata,Candida tropicalis,Candida krusei,Cryptococcus neoformans, andCryptococcus gattii). We also characterized the production of ROS in AMB-resistant isolates. We found that AMB induces the formation of ROS in all the species tested. The inhibition of the mitochondrial respiratory chain by rotenone blocked the induction of ROS by AMB and provided protection from the killing action of the antifungal. Moreover, this phenomenon was absent in strains that displayed resistance to AMB. These strains showed an alteration in the respiration rate and mitochondrial membrane potential and also had higher catalase activity than that of the AMB-susceptible strains. Consistently, AMB failed to induce protein carbonylation in the resistant strains. Our data demonstrate that the production of ROS by AMB is a universal and important action mechanism that is correlated with the fungicidal effect and might explain the low rate of resistance to the molecule. Finally, these data provide an opportunity to design new strategies to improve the efficacy of this antifungal.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Katrijn De Brucker ◽  
Anna Bink ◽  
Els Meert ◽  
Bruno P. A. Cammue ◽  
Karin Thevissen

This study demonstrates a role for superoxide dismutases (Sods) in governing tolerance ofCandida albicansbiofilms to amphotericin B (AmB). Coincubation ofC. albicansbiofilms with AmB and the Sod inhibitors N,N′-diethyldithiocarbamate (DDC) or ammonium tetrathiomolybdate (ATM) resulted in reduced viable biofilm cells and increased intracellular reactive oxygen species levels as compared to incubation of biofilm cells with AmB, DDC, or ATM alone. Hence, Sod inhibitors can be used to potentiate the activity of AmB againstC. albicansbiofilms.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Elena Shekhova ◽  
Olaf Kniemeyer ◽  
Axel A. Brakhage

ABSTRACT Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianyu Liang ◽  
Wei Chen ◽  
Xinyu Yang ◽  
Qiqi Wang ◽  
Zhe Wan ◽  
...  

Aspergillus flavus has been frequently reported as the second cause of invasive aspergillosis (IA), as well as the leading cause in certain tropical countries. Amphotericin B (AMB) is a clinically important therapy option for a range of invasive fungal infections including invasive aspergillosis, and in vitro resistance to AMB was associated with poor outcomes in IA patients treated with AMB. Compared with the AMB-susceptible isolates of A. terreus, the AMB-resistant isolates of A. terreus showed a lower level of AMB-induced endogenous reactive oxygen species (ROS), which was an important cause of AMB resistance. In this study, we obtained one AMB-resistant isolate of A. flavus, with an AMB MIC of 32 μg/mL, which was sensitive to triazoles and echinocandins. This isolate presented elevated endogenous ROS levels, which strongly suggested that no contribution of decreased AMB-induced endogenous ROS for AMB-resistance, opposite to those observed in A. terreus. Further, we confirmed that the elevated endogenous ROS contributed to the sensitivity of the AMB-resistant A. flavus isolate to triazoles and echinocandins. Further investigation is needed to elucidate the causes of elevated endogenous ROS and the resistance mechanism to AMB in A. flavus.


2015 ◽  
Vol 59 (7) ◽  
pp. 4003-4011 ◽  
Author(s):  
Ludmila Matos Baltazar ◽  
Silvia Maria Cordeiro Werneck ◽  
Betânia Maria Soares ◽  
Marcus Vinicius L. Ferreira ◽  
Danielle G. Souza ◽  
...  

ABSTRACTParacoccidioidomycosis (PCM) is a public health concern in Latin America and South America that when not correctly treated can lead to patient death. In this study, the influence of melanin produced byParacoccidioidesspp. on the effects of treatment with antimicrobial photodynamic inhibition (aPI) and antifungal drugs was evaluated. aPI was performed using toluidine blue (TBO) as a photosensitizer and a 630-nm light-emitting diode (LED) light. The antifungals tested were itraconazole and amphotericin B. We evaluated the effects of each approach, aPI or antifungals, against nonmelanized and melanized yeast cells by performing susceptibility tests and by quantifying oxidative and nitrosative bursts during the experiments. aPI reduced nonmelanized cells by 3.0 log units and melanized cells by 1.3 log units. The results showed that melanization protects the fungal cell, probably by acting as a scavenger of nitric oxide and reactive oxygen species, but not of peroxynitrite. Melanin also increased the MICs of itraconazole and amphotericin B, and the drugs were fungicidal for nonmelanized and fungistatic for melanized yeast cells. Our study shows that melanin production byParacoccidioidesyeast cells serves a protective function during aPI and treatment with itraconazole and amphotericin B. The results suggest that melanin binds to the drugs, changing their antifungal activities, and also acts as a scavenger of reactive oxygen species and nitric oxide, but not of peroxynitrite, indicating that peroxynitrite is the main radical that is responsible for fungal death after aPI.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document