Faculty Opinions recommendation of Mastl is required for timely activation of APC/C in meiosis I and Cdk1 reactivation in meiosis II.

Author(s):  
Keith Jones ◽  
Guillaume Halet
Keyword(s):  
2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2016 ◽  
Vol 5 (03) ◽  
pp. 4902
Author(s):  
Afrin Nazli ◽  
Kamini Kumar*

Haworthia limifolia is a xerophytic plant belonging to the family Liliaceae and is indigenous to Africa. It is use extensively for its medicinal properties like antibacterial, antifungal properties and used for the treatment of sores, superficial burns, as a blood purifier and to promote pregnancy in women and cattles. In present investigation chromosomal behaviour of H. limifolia in meiosis was studied. In diplotene stage chiasmata was observed showing the possibilities of genetic recombination. Chromosome clumps were observed in diakinesis indicating sticky nature of chromosomes. Meiotic abnormalities like stickiness, precocious movement, formation of bridges and laggards were also reported in both meiosis I and II. A fairly high percentage of pollen sterility that is 73.41% was recorded resulting in failure of fruit formation. This plant could be designated as facultative apomict (Swanson, 1957) as the only means of reproduction found was asexual or vegetative.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lori Peacock ◽  
Chris Kay ◽  
Chloe Farren ◽  
Mick Bailey ◽  
Mark Carrington ◽  
...  

AbstractMeiosis is a core feature of eukaryotes that occurs in all major groups, including the early diverging excavates. In this group, meiosis and production of haploid gametes have been described in the pathogenic protist, Trypanosoma brucei, and mating occurs in the salivary glands of the insect vector, the tsetse fly. Here, we searched for intermediate meiotic stages among trypanosomes from tsetse salivary glands. Many different cell types were recovered, including trypanosomes in Meiosis I and gametes. Significantly, we found trypanosomes containing three nuclei with a 1:2:1 ratio of DNA contents. Some of these cells were undergoing cytokinesis, yielding a mononucleate gamete and a binucleate cell with a nuclear DNA content ratio of 1:2. This cell subsequently produced three more gametes in two further rounds of division. Expression of the cell fusion protein HAP2 (GCS1) was not confined to gametes, but also extended to meiotic intermediates. We propose a model whereby the two nuclei resulting from Meiosis I undergo asynchronous Meiosis II divisions with sequential production of haploid gametes.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 805-813 ◽  
Author(s):  
Edward S Davis ◽  
Lucia Wille ◽  
Barry A Chestnut ◽  
Penny L Sadler ◽  
Diane C Shakes ◽  
...  

Abstract Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.


Sign in / Sign up

Export Citation Format

Share Document