Faculty Opinions recommendation of Activation of the unfolded protein response by 2-deoxy-D-glucose inhibits Kaposi's sarcoma-associated herpesvirus replication and gene expression.

Author(s):  
Blossom Damania
2012 ◽  
Vol 56 (11) ◽  
pp. 5794-5803 ◽  
Author(s):  
Howard J. Leung ◽  
Elda M. Duran ◽  
Metin Kurtoglu ◽  
Samita Andreansky ◽  
Theodore J. Lampidis ◽  
...  

ABSTRACTLytic replication of the Kaposi's sarcoma-associated herpesvirus (KSHV) is essential for the maintenance of both the infected state and characteristic angiogenic phenotype of Kaposi's sarcoma and thus represents a desirable therapeutic target. During the peak of herpesvirus lytic replication, viral glycoproteins are mass produced in the endoplasmic reticulum (ER). Normally, this leads to ER stress which, through an unfolded protein response (UPR), triggers phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α), resulting in inhibition of protein synthesis to maintain ER and cellular homeostasis. However, in order to replicate, herpesviruses have acquired the ability to prevent eIF2α phosphorylation. Here we show that clinically achievable nontoxic doses of the glucose analog 2-deoxy-d-glucose (2-DG) stimulate ER stress, thereby shutting down eIF2α and inhibiting KSHV and murine herpesvirus 68 replication and KSHV reactivation from latency. Viral cascade genes that are involved in reactivation, including the master transactivator (RTA) gene, glycoprotein B, K8.1, and angiogenesis-regulating genes are markedly decreased with 2-DG treatment. Overall, our data suggest that activation of UPR by 2-DG elicits an early antiviral response via eIF2α inactivation, which impairs protein synthesis required to drive viral replication and oncogenesis. Thus, induction of ER stress by 2-DG provides a new antiherpesviral strategy that may be applicable to other viruses.


2005 ◽  
Vol 71 (5) ◽  
pp. 2737-2747 ◽  
Author(s):  
Andrew H. Sims ◽  
Manda E. Gent ◽  
Karin Lanthaler ◽  
Nigel S. Dunn-Coleman ◽  
Stephen G. Oliver ◽  
...  

ABSTRACT Filamentous fungi have a high capacity for producing large amounts of secreted proteins, a property that has been exploited for commercial production of recombinant proteins. However, the secretory pathway, which is key to the production of extracellular proteins, is rather poorly characterized in filamentous fungi compared to yeast. We report the effects of recombinant protein secretion on gene expression levels in Aspergillus nidulans by directly comparing a bovine chymosin-producing strain with its parental wild-type strain in continuous culture by using expressed sequence tag microarrays. This approach demonstrated more subtle and specific changes in gene expression than those observed when mimicking the effects of protein overproduction by using a secretion blocker. The impact of overexpressing a secreted recombinant protein more closely resembles the unfolded-protein response in vivo.


2020 ◽  
Author(s):  
René L. Vidal ◽  
Denisse Sepulveda ◽  
Paulina Troncoso-Escudero ◽  
Paula Garcia-Huerta ◽  
Constanza Gonzalez ◽  
...  

AbstractAlteration to endoplasmic reticulum (ER) proteostasis is observed on a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR-target genes. Here, we designed an ATF6f-XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has stronger an effect in reducing the abnormal aggregation of mutant huntingtin and alpha-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson’s and Huntington’s disease. These results support the concept where directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1186-1191 ◽  
Author(s):  
Marcelo G. Horenstein ◽  
Roland G. Nador ◽  
Amy Chadburn ◽  
Elizabeth M. Hyjek ◽  
Giorgio Inghirami ◽  
...  

Primary effusion (body cavity–based) lymphoma (PEL) is a recently recognized subtype of malignant lymphoma that exhibits distinctive clinical and biological features, most notably its usual infection with the Kaposi's sarcoma–associated herpesvirus (KSHV). The vast majority of cases also contain Epstein-Barr virus (EBV). This dual viral infection is the first example of a consistent dual herpesviral infection in a human neoplasm and provides a unique model to study viral interactions. We analyzed the pattern of EBV latent gene expression to determine the pathogenic role of this agent in PELs. We examined five PELs coinfected with EBV and KSHV by reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry. EBER1 mRNA, a consistent marker of viral latency, was positive in all PEL cases, although at lower levels than in the non-PEL controls due to EBER1 expression by only a variable subset of lymphoma cells. Qp-initiated mRNA, encoding only EBNA1 and characteristic of latencies I and II, was positive in all PEL cases. Wp- and Cp-initiated mRNAs, encoding all EBNAs and characteristic of latency III, were negative in all cases. LMP1 mRNA, expressed in latencies II and III, was present in three cases of PEL, although at very low levels that were not detectable at the protein level by immunohistochemistry. Low levels of LMP2A mRNA were detected in all cases. BZLF1, an early-intermediate lytic phase marker, was weakly positive in four cases, suggesting a productive viral infection in a very small proportion of cells, which was confirmed by ZEBRA antigen expression. Therefore, PELs exhibit a restricted latency pattern, with expression of EBNA1 in all cases, and low LMP1 and LMP2A levels.


2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Angelica F. Castañeda ◽  
Britt A. Glaunsinger

ABSTRACTIn the beta- and gammaherpesviruses, a specialized complex of viral transcriptional activators (vTAs) coordinate to direct expression of virus-encoded late genes, which are critical for viral assembly and whose transcription initiates only after the onset of viral DNA replication. The vTAs in Kaposi’s sarcoma-associated herpesvirus (KSHV) are ORF18, ORF24, ORF30, ORF31, ORF34, and ORF66. While the general organization of the vTA complex has been mapped, the individual roles of these proteins and how they coordinate to activate late gene promoters remain largely unknown. Here, we performed a comprehensive mutational analysis of the conserved residues in ORF18, which is a highly interconnected vTA component. Surprisingly, the mutants were largely selective for disrupting the interaction with ORF30 but not the other three ORF18 binding partners. Furthermore, disrupting the ORF18-ORF30 interaction weakened the vTA complex as a whole, and an ORF18 point mutant that failed to bind ORF30 was unable to complement an ORF18 null virus. Thus, contacts between individual vTAs are critical as even small disruptions in this complex result in profound defects in KSHV late gene expression.IMPORTANCEKaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma and other B-cell cancers and remains a leading cause of death in immunocompromised individuals. A key step in the production of infectious virions is the transcription of viral late genes, which generates capsid and structural proteins and requires the coordination of six viral proteins that form a complex. The role of these proteins during transcription complex formation and the importance of protein-protein interactions are not well understood. Here, we focused on a central component of the complex, ORF18, and revealed that disruption of its interaction with even a single component of the complex (ORF30) prevents late gene expression and completion of the viral lifecycle. These findings underscore how individual interactions between the late gene transcription components are critical for both the stability and function of the complex.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Muzammel Haque ◽  
K. G. Kousoulas

ABSTRACTHypoxia and hypoxia inducible factors (HIFs) play important roles in the Kaposi’s sarcoma-associated herpesvirus (KSHV) life cycle. KSHV is the causative agent of Kaposi’s sarcoma (KS) and other AIDS-related malignancies. Kaposi’s sarcoma is a highly vascular tumor, which preferentially develops in the lower extremities of the body where blood vessels are often poorly oxygenated. The main cellular responses to hypoxia are mediated mainly by two isoforms of HIF, HIF-1α and HIF-2α. HIF-1α and HIF-2α have common as well as distinct functions, although they are similar in structure and function. Previously, we showed that the KSHV ORF34 protein binds HIF-1α and facilitates its degradation through the ubiquitin-proteasome pathway causing negative regulation of HIF-1α-dependent genes (Haque and Kousoulas, J Virol 87:2164-2173, 2013, https://www.doi.org/10.1128/JVI.02460-12). Herein, we show that theORF34gene is involved in the regulation of KSHV lytic gene expression, since deletion ofORF34resulted in reduced immediate early and early lytic gene expression and blocked late gene expression. Coimmunoprecipitation experiments revealed that the ORF34 protein physically interacted with HIF-2α in transfected as well as in KSHV-infected cells. Utilization of ORF34 truncations revealed that three distinct domains bind HIF-2α and that both bHLH and PAS domains of HIF-2α interacted with ORF34. Unlike HIF-1α, dose-dependent coexpression of ORF34 stabilized the HIF-2α protein, ensuring HIF-2α-dependent transcriptional activity. The ORF34 protein enhanced HIF-2α ubiquitination at the bHLH and PAS domains. The results show that the KSHV ORF34 protein is involved in the KSHV life cycle by regulating the expression of HIF-1α and HIF-2α proteins.IMPORTANCEHypoxia inducible factor 1α (HIF-1α) and HIF-2α are transcription factors which play important roles in the Kaposi’s sarcoma-associated herpesvirus (KSHV) latent and lytic gene replication. Herein, we show that theORF34gene is involved in the regulation of KSHV lytic gene expression, since deletion ofORF34resulted in reduced immediate early and early lytic gene expression and blocked late gene expression. In addition, we demonstrate that the KSHV ORF34 protein binds and stabilizes HIF-2α, in contrast to its role in binding HIF-1α and causing its degradation via the proteasome pathway. Thus, the KSHV ORF34 protein plays a regulatory role in the KSHV life cycle by regulating HIF-1α and HIF-2α expression.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1186-1191 ◽  
Author(s):  
Marcelo G. Horenstein ◽  
Roland G. Nador ◽  
Amy Chadburn ◽  
Elizabeth M. Hyjek ◽  
Giorgio Inghirami ◽  
...  

Abstract Primary effusion (body cavity–based) lymphoma (PEL) is a recently recognized subtype of malignant lymphoma that exhibits distinctive clinical and biological features, most notably its usual infection with the Kaposi's sarcoma–associated herpesvirus (KSHV). The vast majority of cases also contain Epstein-Barr virus (EBV). This dual viral infection is the first example of a consistent dual herpesviral infection in a human neoplasm and provides a unique model to study viral interactions. We analyzed the pattern of EBV latent gene expression to determine the pathogenic role of this agent in PELs. We examined five PELs coinfected with EBV and KSHV by reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry. EBER1 mRNA, a consistent marker of viral latency, was positive in all PEL cases, although at lower levels than in the non-PEL controls due to EBER1 expression by only a variable subset of lymphoma cells. Qp-initiated mRNA, encoding only EBNA1 and characteristic of latencies I and II, was positive in all PEL cases. Wp- and Cp-initiated mRNAs, encoding all EBNAs and characteristic of latency III, were negative in all cases. LMP1 mRNA, expressed in latencies II and III, was present in three cases of PEL, although at very low levels that were not detectable at the protein level by immunohistochemistry. Low levels of LMP2A mRNA were detected in all cases. BZLF1, an early-intermediate lytic phase marker, was weakly positive in four cases, suggesting a productive viral infection in a very small proportion of cells, which was confirmed by ZEBRA antigen expression. Therefore, PELs exhibit a restricted latency pattern, with expression of EBNA1 in all cases, and low LMP1 and LMP2A levels.


Sign in / Sign up

Export Citation Format

Share Document