Faculty Opinions recommendation of FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis.

Author(s):  
Robert K Herman
Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 211-224 ◽  
Author(s):  
Joseph H Chou ◽  
Cornelia I Bargmann ◽  
Piali Sengupta

Abstract Caenorhabditis elegans odr-2 mutants are defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Like many other olfactory mutants, they retain responses to high concentrations of AWC-sensed odors; we show here that these residual responses are caused by the ability of other olfactory neurons (the AWA neurons) to be recruited at high odor concentrations. odr-2 encodes a membrane-associated protein related to the Ly-6 superfamily of GPI-linked signaling proteins and is the founding member of a C. elegans gene family with at least seven other members. Alternative splicing of odr-2 yields three predicted proteins that differ only at the extreme amino terminus. The three isoforms have different promoters, and one isoform may have a unique role in olfaction. An epitope-tagged ODR-2 protein is expressed at high levels in sensory neurons, motor neurons, and interneurons and is enriched in axons. The AWC neurons are superficially normal in their development and structure in odr-2 mutants, but their function is impaired. Our results suggest that ODR-2 may regulate AWC signaling within the neuronal network required for chemotaxis.


2005 ◽  
Vol 8 (6) ◽  
pp. 893-906 ◽  
Author(s):  
Elliot A. Perens ◽  
Shai Shaham

2005 ◽  
Vol 16 (4) ◽  
pp. 1629-1639 ◽  
Author(s):  
S. Jenna ◽  
M.-E. Caruso ◽  
A. Emadali ◽  
D. T. Nguyên ◽  
M. Dominguez ◽  
...  

Rho GTPases are mainly known for their implication in cytoskeleton remodeling. They have also been recently shown to regulate various aspects of membrane trafficking. Here, we report the identification and the characterization of a novel Caenorhabditis elegans Cdc42-related protein, CRP-1, that shows atypical enzymatic characteristics in vitro. Expression in mouse fibroblasts revealed that, in contrast with CDC-42, CRP-1 was unable to reorganize the actin cytoskeleton and mainly localized to trans-Golgi network and recycling endosomes. This subcellular localization, as well as its expression profile restricted to a subset of epithelial-like cells in C. elegans, suggested a potential function for this protein in polarized membrane trafficking. Consistent with this hypothesis, alteration of CRP-1 expression affected the apical trafficking of CHE-14 in vulval and rectal epithelial cells and sphingolipids (C6-NBD-ceramide) uptake and/or trafficking in intestinal cells. However, it did not affect basolateral trafficking of myotactin in the pharynx and the targeting of IFB-2 and AJM-1, two cytosolic apical markers of intestine epithelial cells. Hence, our data demonstrate a function for CRP-1 in the regulation of membrane trafficking in a subset of cells with epithelial characteristics.


2015 ◽  
Author(s):  
Ahmed A. Chughtai ◽  
Filip Kaššák ◽  
Markéta Kostrouchová ◽  
Jan Philipp Novotný ◽  
Michael W. Krause ◽  
...  

The perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid droplets. Human perilipins 1 and 2 localize in transgenic C. elegans on the same structures as proteins expressed from W01A8.1 gene. Inhibition and elimination of W01A8.1 affects the appearance of lipid droplets especially visible as the formation of large lipid droplets localized around the dividing nucleus during the early zygotic divisions. This phenomenon disappears in later stages of embryogenesis indicating the existence of an additional mechanism of lipid regulation in C. elegans. Our results demonstrate that perilipin-related regulation of fat metabolism is conserved in nematodes and provide new possibilities for functional studies of lipid metabolism.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Michael Krieg ◽  
Jan Stühmer ◽  
Juan G Cueva ◽  
Richard Fetter ◽  
Kerri Spilker ◽  
...  

Our bodies are in constant motion and so are the neurons that invade each tissue. Motion-induced neuron deformation and damage are associated with several neurodegenerative conditions. Here, we investigated the question of how the neuronal cytoskeleton protects axons and dendrites from mechanical stress, exploiting mutations in UNC-70 β-spectrin, PTL-1 tau/MAP2-like and MEC-7 β-tubulin proteins in Caenorhabditis elegans. We found that mechanical stress induces supercoils and plectonemes in the sensory axons of spectrin and tau double mutants. Biophysical measurements, super-resolution, and electron microscopy, as well as numerical simulations of neurons as discrete, elastic rods provide evidence that a balance of torque, tension, and elasticity stabilizes neurons against mechanical deformation. We conclude that the spectrin and microtubule cytoskeletons work in combination to protect axons and dendrites from mechanical stress and propose that defects in β-spectrin and tau may sensitize neurons to damage.


2015 ◽  
Author(s):  
Ahmed A. Chughtai ◽  
Filip Kaššák ◽  
Markéta Kostrouchová ◽  
Jan Philipp Novotný ◽  
Michael W. Krause ◽  
...  

The perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid droplets. Human perilipins 1 and 2 localize in transgenic C. elegans on the same structures as proteins expressed from W01A8.1 gene. Inhibition and elimination of W01A8.1 affects the appearance of lipid droplets especially visible as the formation of large lipid droplets localized around the dividing nucleus during the early zygotic divisions. This phenomenon disappears in later stages of embryogenesis indicating the existence of an additional mechanism of lipid regulation in C. elegans. Our results demonstrate that perilipin-related regulation of fat metabolism is conserved in nematodes and provide new possibilities for functional studies of lipid metabolism.


2017 ◽  
Author(s):  
Sarah-Lena Offenburger ◽  
Xue Yan Ho ◽  
Theresa Tachie-Menson ◽  
Sean Coakley ◽  
Massimo A. Hilliard ◽  
...  

AbstractOxidative stress is linked to many pathological conditions including the loss of dopaminergic neurons in Parkinson’s disease. The vast majority of disease cases appear to be caused by a combination of genetic mutations and environmental factors. We screened for genes protecting Caenorhabditis elegans dopaminergic neurons from oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA) and identified the transthyretin-related gene ttr-33. The only described C. elegans transthyretin-related protein to date, TTR-52, has been shown to mediate corpse engulfment as well as axon repair. We demonstrate that TTR-52 and TTR-33 have distinct roles. TTR-33 is likely produced in the posterior arcade cells in the head of C. elegans larvae and is predicted to be a secreted protein. TTR-33 protects C. elegans from oxidative stress induced by paraquat or H2O2 at an organismal level. The increased oxidative stress sensitivity of ttr-33 mutants is alleviated by mutations affecting the KGB-1 MAPK kinase pathway, whereas it is enhanced by mutation of the JNK-1 MAPK kinase. Finally, we provide genetic evidence that the C. elegans cell corpse engulfment pathway is required for the degeneration of dopaminergic neurons after exposure to 6-OHDA. In summary, we describe a new neuroprotective mechanism and demonstrate that TTR-33 normally functions to protect dopaminergic neurons from oxidative stress-induced degeneration, potentially by acting as a secreted sensor or scavenger of oxidative stress.Author summaryAnimals employ multiple mechanisms to prevent their cells from damage by reactive oxygen species, chemically reactive molecules containing oxygen. Oxidative stress, caused by the overabundance of reactive oxygen species or a decreased cellular defence against these chemicals, is linked to a variety of neurodegenerative conditions, including the loss of dopaminergic neurons in Parkinson’s disease. In this study, we discovered a novel protective molecule that functions to prevent dopaminergic neurodegeneration caused by oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA). We used the nematode C. elegans, a well-characterised model in which mechanisms can be studied on an organismal level. When C. elegans is exposed to 6-OHDA, its dopaminergic neurons gradually die. Our major findings include (i) mutations of the transthyretin-related gene ttr-33 causes highly increased dopaminergic neurodegeneration after 6-OHDA exposure; (ii) TTR-33 is likely produced and secreted by several cells in the head of the animal; (iii) TTR-33 protects against oxidative stress induced by other compounds; (iv) mutations in the KGB-1 MAP kinase stress pathway alleviate dopaminergic neuron loss in the ttr-33 mutant; and (v) the cell corpse engulfment pathway is required for dopaminergic neurodegeneration. We hypothesise that TTR-33 protects dopaminergic neurons against 6-OHDA-induced oxidative stress by acting as an oxygen sensor or scavenger.


Sign in / Sign up

Export Citation Format

Share Document