scholarly journals Faculty Opinions recommendation of Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of middle east respiratory syndrome coronavirus infection in the united arab emirates, april 2014.

Author(s):  
Susan Weiss
Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 592
Author(s):  
Stephanie N. Seifert ◽  
Jonathan E. Schulz ◽  
Stacy Ricklefs ◽  
Michael Letko ◽  
Elangeni Yabba ◽  
...  

Middle East respiratory syndrome-related coronavirus (MERS-CoV) is a persistent zoonotic pathogen with frequent spillover from dromedary camels to humans in the Arabian Peninsula, resulting in limited outbreaks of MERS with a high case-fatality rate. Full genome sequence data from camel-derived MERS-CoV variants show diverse lineages circulating in domestic camels with frequent recombination. More than 90% of the available full MERS-CoV genome sequences derived from camels are from just two countries, the Kingdom of Saudi Arabia (KSA) and United Arab Emirates (UAE). In this study, we employ a novel method to amplify and sequence the partial MERS-CoV genome with high sensitivity from nasal swabs of infected camels. We recovered more than 99% of the MERS-CoV genome from field-collected samples with greater than 500 TCID50 equivalent per nasal swab from camel herds sampled in Jordan in May 2016. Our subsequent analyses of 14 camel-derived MERS-CoV genomes show a striking lack of genetic diversity circulating in Jordan camels relative to MERS-CoV genome sequences derived from large camel markets in KSA and UAE. The low genetic diversity detected in Jordan camels during our study is consistent with a lack of endemic circulation in these camel herds and reflective of data from MERS outbreaks in humans dominated by nosocomial transmission following a single introduction as reported during the 2015 MERS outbreak in South Korea. Our data suggest transmission of MERS-CoV among two camel herds in Jordan in 2016 following a single introduction event.


2018 ◽  
Vol 10 (S9) ◽  
pp. S2260-S2271 ◽  
Author(s):  
Yanqun Wang ◽  
Jing Sun ◽  
Airu Zhu ◽  
Jingxian Zhao ◽  
Jincun Zhao

2015 ◽  
Vol 89 (11) ◽  
pp. 6117-6120 ◽  
Author(s):  
Jincun Zhao ◽  
Ranawaka A. P. M. Perera ◽  
Ghazi Kayali ◽  
David Meyerholz ◽  
Stanley Perlman ◽  
...  

ABSTRACTMiddle East respiratory syndrome (MERS) is a highly lethal pulmonary infection. Serum from convalescent MERS patients may provide some benefit but is not readily available. In contrast, nearly all camels in the Middle East have been infected with MERS-CoV. Here, we show that sera obtained from MERS-immune camels augment the kinetics of MERS-CoV clearance and reduce the severity of pathological changes in infected lungs, with efficacy proportional to the titer of MERS-CoV-neutralizing serum antibody.IMPORTANCEMiddle East respiratory syndrome, caused by a coronavirus, is highly lethal, with a case fatality rate of 35 to 40%. No specific therapy is available, and care is generally supportive. One promising approach is passive administration of sera from convalescent human MERS patients or other animals to exposed or infected patients. The vast majority of, if not all, camels in the Middle East have been infected with MERS-CoV, and some contain high titers of antibody to the virus. Here, we show that this antibody is protective if delivered either prophylactically or therapeutically to mice infected with MERS-CoV, indicating that this may be a useful intervention in infected patients.


Sign in / Sign up

Export Citation Format

Share Document