scholarly journals Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection

2018 ◽  
Vol 72 ◽  
pp. 8-10 ◽  
Author(s):  
Wan Beom Park ◽  
Leo L.M. Poon ◽  
Su-Jin Choi ◽  
Pyoeng Gyun Choe ◽  
Kyoung-Ho Song ◽  
...  
2020 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Richard Avoi ◽  
Syed Sharizman Syed Abdul Rahim ◽  
Mohammad Saffree Jeffree ◽  
Visweswara Rao Pasupuleti

  Since the Coronavirus disease 2019 (COVID-19) pandemic unfolded in China (Huang et al., 2020) back in December 2019, thus far, more than five million people were infected with the virus and 333,401 death were recorded worldwide (WHO, 2020b). The exponential increase in number shows that COVID-19 spreads faster compared to Severe Acute Respiratory Syndrome (SARS) or Middle East Respiratory Syndrome (MERS). A study (Zou et al., 2020) has shown that high viral loads of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are detected in symptomatic patients soon after the onset of symptoms, wherein the load content is higher in their nose than in their throat. Furthermore, the same study has revealed similar viral loads between symptomatic and asymptomatic patients. Therefore, these findings may suggest the possibility of COVID-19 transmission earlier before the onset of symptoms itself. In the early stages of the pandemic, the control measures carried out have focused on screening of symptomatic person; at the time, the whole world thought that the spread of SARS-Cov-2 would only occur through symptomatic person-to-person transmission. In comparison, transmission in SARS would happen after the onset of illness, whereby the viral loads in the respiratory tract peaked around ten days after the development of symptoms by patients (Peiris et al., 2003). However, case detection for SARS (i.e. screening of symptomatic persons) will be grossly inadequate for the current COVID-19 pandemic, thus requiring different strategies to detect those infected with SARS-CoV-2 before they develop the symptoms.


2014 ◽  
Vol 60 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Christian Drosten ◽  
Doreen Muth ◽  
Victor M. Corman ◽  
Raheela Hussain ◽  
Malaki Al Masri ◽  
...  

Abstract Background.  In spring 2014, a sudden rise in the number of notified Middle East respiratory syndrome coronavirus (MERS-CoV) infections occurred across Saudi Arabia with a focus in Jeddah. Hypotheses to explain the outbreak pattern include increased surveillance, increased zoonotic transmission, nosocomial transmission, and changes in viral transmissibility, as well as diagnostic laboratory artifacts. Methods.  Diagnostic results from Jeddah Regional Laboratory were analyzed. Viruses from the Jeddah outbreak and viruses occurring during the same time in Riyadh, Al-Kharj, and Madinah were fully or partially sequenced. A set of 4 single-nucleotide polymorphisms distinctive to the Jeddah outbreak were determined from additional viruses. Viruses from Riyadh and Jeddah were isolated and studied in cell culture. Results.  Up to 481 samples were received per day for reverse transcription polymerase chain reaction (RT-PCR) testing. A laboratory proficiency assessment suggested positive and negative results to be reliable. Forty-nine percent of 168 positive-testing samples during the Jeddah outbreak stemmed from King Fahd Hospital. All viruses from Jeddah were monophyletic and similar, whereas viruses from Riyadh were paraphyletic and diverse. A hospital-associated transmission cluster, to which cases in Indiana (United States) and the Netherlands belonged, was discovered in Riyadh. One Jeddah-type virus was found in Riyadh, with matching travel history to Jeddah. Virus isolates representing outbreaks in Jeddah and Riyadh were not different from MERS-CoV EMC/2012 in replication, escape of interferon response, or serum neutralization. Conclusions.  Virus shedding and virus functions did not change significantly during the outbreak in Jeddah. These results suggest the outbreaks to have been caused by biologically unchanged viruses in connection with nosocomial transmission.


2018 ◽  
Vol 10 (S9) ◽  
pp. S2260-S2271 ◽  
Author(s):  
Yanqun Wang ◽  
Jing Sun ◽  
Airu Zhu ◽  
Jingxian Zhao ◽  
Jincun Zhao

2015 ◽  
Vol 89 (11) ◽  
pp. 6117-6120 ◽  
Author(s):  
Jincun Zhao ◽  
Ranawaka A. P. M. Perera ◽  
Ghazi Kayali ◽  
David Meyerholz ◽  
Stanley Perlman ◽  
...  

ABSTRACTMiddle East respiratory syndrome (MERS) is a highly lethal pulmonary infection. Serum from convalescent MERS patients may provide some benefit but is not readily available. In contrast, nearly all camels in the Middle East have been infected with MERS-CoV. Here, we show that sera obtained from MERS-immune camels augment the kinetics of MERS-CoV clearance and reduce the severity of pathological changes in infected lungs, with efficacy proportional to the titer of MERS-CoV-neutralizing serum antibody.IMPORTANCEMiddle East respiratory syndrome, caused by a coronavirus, is highly lethal, with a case fatality rate of 35 to 40%. No specific therapy is available, and care is generally supportive. One promising approach is passive administration of sera from convalescent human MERS patients or other animals to exposed or infected patients. The vast majority of, if not all, camels in the Middle East have been infected with MERS-CoV, and some contain high titers of antibody to the virus. Here, we show that this antibody is protective if delivered either prophylactically or therapeutically to mice infected with MERS-CoV, indicating that this may be a useful intervention in infected patients.


Sign in / Sign up

Export Citation Format

Share Document