scholarly journals Limited Genetic Diversity Detected in Middle East Respiratory Syndrome-Related Coronavirus Variants Circulating in Dromedary Camels in Jordan

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 592
Author(s):  
Stephanie N. Seifert ◽  
Jonathan E. Schulz ◽  
Stacy Ricklefs ◽  
Michael Letko ◽  
Elangeni Yabba ◽  
...  

Middle East respiratory syndrome-related coronavirus (MERS-CoV) is a persistent zoonotic pathogen with frequent spillover from dromedary camels to humans in the Arabian Peninsula, resulting in limited outbreaks of MERS with a high case-fatality rate. Full genome sequence data from camel-derived MERS-CoV variants show diverse lineages circulating in domestic camels with frequent recombination. More than 90% of the available full MERS-CoV genome sequences derived from camels are from just two countries, the Kingdom of Saudi Arabia (KSA) and United Arab Emirates (UAE). In this study, we employ a novel method to amplify and sequence the partial MERS-CoV genome with high sensitivity from nasal swabs of infected camels. We recovered more than 99% of the MERS-CoV genome from field-collected samples with greater than 500 TCID50 equivalent per nasal swab from camel herds sampled in Jordan in May 2016. Our subsequent analyses of 14 camel-derived MERS-CoV genomes show a striking lack of genetic diversity circulating in Jordan camels relative to MERS-CoV genome sequences derived from large camel markets in KSA and UAE. The low genetic diversity detected in Jordan camels during our study is consistent with a lack of endemic circulation in these camel herds and reflective of data from MERS outbreaks in humans dominated by nosocomial transmission following a single introduction as reported during the 2015 MERS outbreak in South Korea. Our data suggest transmission of MERS-CoV among two camel herds in Jordan in 2016 following a single introduction event.

Virus Genes ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 509-513 ◽  
Author(s):  
Mohammed F. Yusof ◽  
Yassir M. Eltahir ◽  
Wissam S. Serhan ◽  
Farouk M. Hashem ◽  
Elsaeid A. Elsayed ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Mohammed Farouk Yusof ◽  
Krista Queen ◽  
Yassir Mohammed Eltahir ◽  
Clinton R Paden ◽  
Zulaikha Mohamed Abdel Hameed Al Hammadi ◽  
...  

mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Thomas Briese ◽  
Nischay Mishra ◽  
Komal Jain ◽  
Iyad S. Zalmout ◽  
Omar J. Jabado ◽  
...  

ABSTRACTComplete Middle East respiratory syndrome coronavirus (MERS-CoV) genome sequences were obtained from nasal swabs of dromedary camels sampled in the Kingdom of Saudi Arabia through direct analysis of nucleic acid extracts or following virus isolation in cell culture. Consensus dromedary MERS-CoV genome sequences were the same with either template source and identical to published human MERS-CoV sequences. However, in contrast to individual human cases, where only clonal genomic sequences are reported, detailed population analyses revealed the presence of more than one genomic variant in individual dromedaries. If humans are truly infected only with clonal virus populations, we must entertain a model for interspecies transmission of MERS-CoV wherein only specific genotypes are capable of passing bottleneck selection.IMPORTANCEIn most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection.


2022 ◽  
pp. 030098582110691
Author(s):  
Nigeer Te ◽  
Malgorzata Ciurkiewicz ◽  
Judith M. A. van den Brand ◽  
Jordi Rodon ◽  
Ann-Kathrin Haverkamp ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1628 ◽  
Author(s):  
Stephen A. Goldstein ◽  
Susan R. Weiss

Middle East respiratory syndrome-associated coronavirus (MERS-CoV) has been a significant research focus since its discovery in 2012. Since 2012, 2,040 cases and 712 deaths have been recorded (as of August 11, 2017), representing a strikingly high case fatality rate of 36%. Over the last several years, MERS-CoV research has progressed in several parallel and complementary directions. This review will focus on three particular areas: the origins and evolution of MERS-CoV, the challenges and achievements in the development of MERS-CoV animal models, and our understanding of how novel proteins unique to MERS-CoV counter the host immune response. The origins of MERS-CoV, likely in African bats, are increasingly clear, although important questions remain about the establishment of dromedary camels as a reservoir seeding human outbreaks. Likewise, there have been important advances in the development of animal models, and both non-human primate and mouse models that seem to recapitulate human disease are now available. How MERS-CoV evades and inhibits the host innate immune response remains less clear. Although several studies have identified MERS-CoV proteins as innate immune antagonists, little of this work has been conducted using live virus under conditions of actual infection, but rather with ectopically expressed proteins. Accordingly, considerable space remains for major contributions to understanding unique ways in which MERS-CoV interacts with and modulates the host response. Collectively, these areas have seen significant advances over the last several years but continue to offer exciting opportunities for discovery.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5871-5871 ◽  
Author(s):  
Ahmed Alaskar ◽  
Mohammed Bosaeed ◽  
Hina Rehan ◽  
May Anne Mendoza ◽  
Bader Alahmari ◽  
...  

We present the largest to date of a case series of nine patients with hematological and oncological malignancies who were infected with Middle East Respiratory Syndrome Coronavirus (MERS-CoV). MERS-CoV is a novel beta-coronavirus with a high fatality rate in comorbid patients. The majority of MERS cases globally were reported from Saudi Arabia (1983 cases, including 745 related deaths with a case-fatality rate of 37.5%) according to the WHO update of February 2019. All were clinically stable before acquiring the virus. Most of the cases had an active disease as relapse or refractory with three cases being neutropenic. The clinical presentation and radiological features of the patients were variable and inconsistent (Table 1). Diagnosis was confirmed with RT-PCR assays targeting upstream of the E gene and the open-reading frame gene 1a which had to be done repeatedly and required an average of 3 (with max. of 7) samples for a test to be positive (Table 2). All the patients developed respiratory failure, were admitted to the critical care unit (ICU) and required mechanical ventilation. The length of hospital stay ranged from 15 - 48, with an average of 24 days. Unfortunately, all nine patients died within days after admission to the ICU. In addition, the time from diagnosis to death has an average of 9 days ranging from 2-24 days, respectively. In conclusion, MERS CoV infection in hematology/oncology patients has a very poor prognosis regardless of the status of the underlying disease. The clinical presentation is not distinctive and confirming the diagnosis requires numerous respiratory samples. Measures to prevent nosocomial outbreaks should include proper compliance with personal protection equipment by health-care workers when managing patients with suspected and confirmed MERS-CoV infection and prompt isolation of infected patients. Future research is required to enhance our understanding of the disease and to evaluate superior diagnostic and therapeutic options. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 3 (12) ◽  
pp. e521-e528 ◽  
Author(s):  
Sherif A El-Kafrawy ◽  
Victor M Corman ◽  
Ahmed M Tolah ◽  
Saad B Al Masaudi ◽  
Ahmed M Hassan ◽  
...  

2019 ◽  
Vol 147 ◽  
Author(s):  
R. S. Sikkema ◽  
E. A. B. A. Farag ◽  
Mazharul Islam ◽  
Muzzamil Atta ◽  
C. B. E. M. Reusken ◽  
...  

2013 ◽  
Vol 18 (50) ◽  
Author(s):  
C B Reusken ◽  
M Ababneh ◽  
V S Raj ◽  
B Meyer ◽  
A Eljarah ◽  
...  

Between June and September 2013, sera from 11 dromedary camels, 150 goats, 126 sheep and 91 cows were collected in Jordan, where the first human Middle-East respiratory syndrome (MERS) cluster appeared in 2012. All sera were tested for MERS-coronavirus (MERS-CoV) specific antibodies by protein microarray with confirmation by virus neutralisation. Neutralising antibodies were found in all camel sera while sera from goats and cattle tested negative. Although six sheep sera reacted with MERS-CoV antigen, neutralising antibodies were not detected.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 396 ◽  
Author(s):  
Alice N. Kiyong’a ◽  
Elizabeth A. J. Cook ◽  
Nisreen M. A. Okba ◽  
Velma Kivali ◽  
Chantal Reusken ◽  
...  

Middle East respiratory syndrome (MERS) is a respiratory disease caused by a zoonotic coronavirus (MERS-CoV). Camel handlers, including slaughterhouse workers and herders, are at risk of acquiring MERS-CoV infections. However, there is limited evidence of infections among camel handlers in Africa. The purpose of this study was to determine the presence of antibodies to MERS-CoV in high-risk groups in Kenya. Sera collected from 93 camel handlers, 58 slaughterhouse workers and 35 camel herders, were screened for MERS-CoV antibodies using ELISA and PRNT. We found four seropositive slaughterhouse workers by PRNT. Risk factors amongst the slaughterhouse workers included being the slaughterman (the person who cuts the throat of the camel) and drinking camel blood. Further research is required to understand the epidemiology of MERS-CoV in Africa in relation to occupational risk, with a need for additional studies on the transmission of MERS-CoV from dromedary camels to humans, seroprevalence and associated risk factors.


Sign in / Sign up

Export Citation Format

Share Document