Faculty Opinions recommendation of Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium.

Author(s):  
Timothy McKinsey ◽  
Rushita Bagchi
Author(s):  
Constantijn Franssen ◽  
Jeroen Kole ◽  
René Musters ◽  
Nazha Hamdani ◽  
Walter J. Paulus

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pelin A. Golforoush ◽  
Priyanka Narasimhan ◽  
Patricia P. Chaves-Guerrero ◽  
Elsa Lawrence ◽  
Gary Newton ◽  
...  

2021 ◽  
Vol 14 (8) ◽  
pp. 748
Author(s):  
Péter P. Nánási ◽  
Balázs Horváth ◽  
Fábián Tar ◽  
János Almássy ◽  
Norbert Szentandrássy ◽  
...  

Due to the limited availability of healthy human ventricular tissues, the most suitable animal model has to be applied for electrophysiological and pharmacological studies. This can be best identified by studying the properties of ion currents shaping the action potential in the frequently used laboratory animals, such as dogs, rabbits, guinea pigs, or rats, and comparing them to those of human cardiomyocytes. The authors of this article with the experience of three decades of electrophysiological studies, performed in mammalian and human ventricular tissues and isolated cardiomyocytes, summarize their results obtained regarding the major canine and human cardiac ion currents. Accordingly, L-type Ca2+ current (ICa), late Na+ current (INa-late), rapid and slow components of the delayed rectifier K+ current (IKr and IKs, respectively), inward rectifier K+ current (IK1), transient outward K+ current (Ito1), and Na+/Ca2+ exchange current (INCX) were characterized and compared. Importantly, many of these measurements were performed using the action potential voltage clamp technique allowing for visualization of the actual current profiles flowing during the ventricular action potential. Densities and shapes of these ion currents, as well as the action potential configuration, were similar in human and canine ventricular cells, except for the density of IK1 and the recovery kinetics of Ito. IK1 displayed a largely four-fold larger density in canine than human myocytes, and Ito recovery from inactivation displayed a somewhat different time course in the two species. On the basis of these results, it is concluded that canine ventricular cells represent a reasonably good model for human myocytes for electrophysiological studies, however, it must be borne in mind that due to their stronger IK1, the repolarization reserve is more pronounced in canine cells, and moderate differences in the frequency-dependent repolarization patterns can also be anticipated.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Ruppert ◽  
Z.S Onodi ◽  
P Leszek ◽  
V.E Toth ◽  
G Koncsos ◽  
...  

Abstract Background Inflammation and cytokine release have been implicated in the pathogenesis of chronic heart failure (CHF). Of particular interest, Canakinumab, a monoclonal antibody against interleukin-1b (IL-1β), had provided benefit against cardiovascular events, suggesting that blockade of IL-1β secretion and signaling might be a promising new therapeutic target. Although, recent studies have provided evidence that inflammasome activation is the main contributor to IL-1β maturation, the role of inflammasome activation in CHF remains unknown. Objective Therefore, we aimed to assess inflammasome activation in myocardial samples from end-stage failing hearts. Methods Inflammasome activation was assessed by immunoblotting in left ventricular myocardial specimens harvested from patients with end-stage CHF. Furthermore, immunoblot measurements were also performed on translational animal models of CHF (e.g. rat models of permanent coronary artery ligation and transverse aortic constriction). Left ventricular monocyte and macrophage infiltration was detected by immunohistochemistry. To investigate the molecular background of inflammasome activation, a series of cell culture experiments were performed on AC16 human cardiomyocytes and THP-1 human monocytic cell lines. Results Out of the 4 major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human CHF while the NLRP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change. A similar expression pattern in AIM2 and NLRC4 was also noted in CHF animal models. Furthermore, robust infiltration of Iba1+ monocytes/macrophages was observed in human failing hearts as well as in different animal models of CHF. In vitro AIM2 inflammasome activation, as induced by transfection with double-stranded DNA [poly(deoxyadenylic-deoxythymidylic)] was reduced significantly by the pharmacological blockade of pannexin-1 channels. Conclusions AIM2 and NLRC4 inflammasome activation might contribute to chronic inflammation in CHF. Our findings suggest that pannexin-1 channels might be a promising novel target to reduce inflammasome activation. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): NVKP_16-1-2016-0017


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
B.S Ferguson ◽  
J.A Stern ◽  
M.S Oldach ◽  
Y Ueda ◽  
E.S Ontiveros ◽  
...  

Abstract Introduction Hypertrophic cardiomyopathy (HCM) is a progressive disease characterized by cardiac remodeling, hyperdynamic contraction, and impaired ventricular filling that can lead to dynamic left-ventricular outflow-track (LVOT) obstruction and exertional intolerance. Direct myosin-inhibition with mavacamten can normalize contractility and improve exercise capacity in patients with oHCM, providing sustained symptomatic relief. However, mavacamten can also improve ventricular filling by limiting residual cross-bridges during diastole, and therefore, may offer cardiac benefits beyond obstruction reprieve. This study leveraged a feline model of oHCM, cats with the A31P MYBPC3 variant, to study the acute in vivo effects of MYK-581, a mavacamten surrogate, on cardiac hemodynamics and filling. Methods A31P-homozygous cats with HCM (A31P, n=10) and wild-type healthy controls (CTRL, n=9) were anesthetized and instrumented for invasive pressure-volume (PV) measurements as well as trans-thoracic echocardiographic recording. A subset of cats were assigned to receive either vehicle (VEH, n=7) or MYK-581 (MYK, n=8) with a short IV infusion. Cardiac hemodynamics, function, and geometry were assessed at steady state before and during dobutamine challenges (2.5 μg/kg/min IV). Results A31P cats had thicker ventricular walls (6.4±0.1 vs. 5.2±0.2 mm, P<0.05) and hyperdynamic contraction (FS: 61±4 vs. 50±3%, P<0.05) relative to controls and presented with dynamic LVOT obstruction in 54% of cases. HCM cats had elevated end-diastolic pressures (17±1.4 vs. 9±1.0 mmHg, P<0.05), with prolonged time constants of relaxation (60±4.1 vs. 36±2.4 ms, P<0.05) and elevated end-diastolic stiffness (Eed: 0.44±0.06 vs. 0.25±0.01 mmHg/mL). Acute treatment with MYK-581 alleviated LVOT obstruction (0% vs. 38%), normalized contractility (FS: −7±2%), and increased systolic/diastolic chamber dimensions (e.g., LVIDd: +13±4%) (all P<0.05), while reducing EDP (15±2 to 13±2 mmHg, P<0.05), suggesting acute improvement in ventricular distensibility. Indeed, MYK-581 treatment reduced end-diastolic stiffness (Eed: 0.48±0.11 vs. 0.36±0. 10 mmHg/mL, P<0.05) and normalized trans-mitral motion patterns during filling. Conclusions Bred cats, homozygous for the A31P MYBPC3 variant, presented a cardiac phenotype that models multiple characteristics of the human oHCM phenotype including dynamic LVOT obstruction. Acute treatment with the mavacamten surrogate, MYK-581, not only alleviated hypercontractility and LVOT obstruction, but improved ventricular filling and end-diastolic pressures. Taken together, these pre-clinical observations show potential salutary effects beyond obstruction relief in patients with HCM. Funding Acknowledgement Type of funding source: Private company. Main funding source(s): MyoKardia


Author(s):  
Kang Zhou ◽  
Yan Xu ◽  
Qiong Wang ◽  
Lini Dong

Abstract Myocardial injury is still a serious condition damaging the public health. Clinically, myocardial injury often leads to cardiac dysfunction and, in severe cases, death. Reperfusion of the ischemic myocardial tissues can minimize acute myocardial infarction (AMI)-induced damage. MicroRNAs are commonly recognized in diverse diseases and are often involved in the development of myocardial ischemia/reperfusion injury. However, the role of miR-431 remains unclear in myocardial injury. In this study, we investigated the underlying mechanisms of miR-431 in the cell apoptosis and autophagy of human cardiomyocytes in hypoxia/reoxygenation (H/R). H/R treatment reduced cell viability, promoted cell apoptotic rate, and down-regulated the expression of miR-431 in human cardiomyocytes. The down-regulation of miR-431 by its inhibitor reduced cell viability and induced cell apoptosis in the human cardiomyocytes. Moreover, miR-431 down-regulated the expression of autophagy-related 3 (ATG3) via targeting the 3ʹ-untranslated region of ATG3. Up-regulated expression of ATG3 by pcDNA3.1-ATG3 reversed the protective role of the overexpression of miR-431 on cell viability and cell apoptosis in H/R-treated human cardiomyocytes. More importantly, H/R treatments promoted autophagy in the human cardiomyocytes, and this effect was greatly alleviated via miR-431-mimic transfection. Our results suggested that miR-431 overexpression attenuated the H/R-induced myocardial damage at least partly through regulating the expression of ATG3.


Sign in / Sign up

Export Citation Format

Share Document