Faculty Opinions recommendation of A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity.

Author(s):  
Erich Grotewold ◽  
Nan Jiang
1981 ◽  
Vol 36 (1-2) ◽  
pp. 30-34 ◽  
Author(s):  
Rainer Sütfeld ◽  
Rolf Wiermann

Abstract Chalcone synthase was isolated from both anthers of Tulipa cv. “Apeldoorn” and petals of Cosmos sulphureus Cav. After certain prepurification steps, the enzymes were further purified using gel chromatography on Sephadex G-200 followed by repeated hydroxylapatite absorption chromatography. Both the enzymes showed the same chromatographic properties. After gel chromatography as well as after the first hydroxylapatite fractionation, the reaction products appeared as flavanones. However, after the second hydroxylapatite step, production of chalcones was observed. Like the enzyme from tulip anthers, the synthase from Cosmos petals produced the correspondingly substituted chalcones when p-coumaroyl-CoA, caffeoyl-CoA and feruloyl-CoA, respectively, were used as substractes. In both the cases, the ratios of the different chalcones produced were found to be about the same. The appearance of chalcone synthesis in this in vitro assay is caused by the complete elimination of chalcone isomerase in the purification procedure. The importance of the isomerase for flavonoid biosynthesis, particularly in plant systems which are accumulating chalcones, is discussed.


2008 ◽  
Vol 3 (8) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Heidi Halbwirth ◽  
Gerlinde Muster ◽  
Karl Stich

Dahlia ( Dahlia variabilis) exists in a dazzling array of cultivars, showing red, orange, magenta, lilac, yellow and white flower color, which is exclusively based on the presence of flavonoids and biochemically related compounds. Red hues (red, orange, magenta, lilac) are a result of anthocyanin accumulation in varying concentration and composition, while a yellow color is based on the formation of 6′-deoxychalcones in the petals. Red dahlia pigments are all derived from pelargonidin and cyanidin. Delphinidin derivatives are not formed due to the absence of flavonoid 3′,5′-hydroxylase in dahlia petals, which provides an explanation for the lack of blue dahlia flowers. Orange, lilac and rose cultivars are characterized by a lower anthocyanin content compared to many red cultivars. We investigated 198 cultivars for the presence of flavonoid enzymes. The activities of chalcone isomerase (CHI), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), flavanone 3-hydroxylase (FHT), flavone synthase II (FNSII), flavonol synthase (FLS) and flavonoid 3′-hydroxylase (F3′H) were demonstrated in enzyme preparations of dahlia petals. CHI accepted 6′-hydroxychalcones as substrates, but did not catalyze the conversion of 6′-deoxychalcones to the corresponding flavanones. White cultivars were frequently characterized by the lack of DFR activity, whereas in many yellow cultivars neither FHT nor DFR activity could be shown.


2002 ◽  
Vol 61 (2) ◽  
pp. 121-132 ◽  
Author(s):  
Bourlaye Fofana ◽  
David J McNally ◽  
Caroline Labbé ◽  
Raynald Boulanger ◽  
Nicole Benhamou ◽  
...  

Treatment of cell suspension cultures of French bean ( Phaseolus vulgaris ) with polysaccharide elicitor molecules from cell walls of the anthracnose fungus, Colletotrichum lindemuthianum , results in the rapid accumulation of isoflavonoid phytoalexins, deposition of wall-bound phenolic compounds and synthesis of hydroxyproline-rich glycoproteins. These changes are dependent upon a highly selective induction of gene products, including the enzymes L-phenylalanine ammonia-lyase, cytochrome P450-dependent cinnamic acid 4-hydroxylase, chalcone synthase, chalcone isomerase, prolyl hydroxylase and protein: arabinosyl transferase. Use of in vivo labelling, in vitro translation and RNA blot hybridization techniques has shown that these elicitormediated changes arise from rapid but transient induction of enzyme synthesis, resulting from the accumulation of specific mRNAs. Similar phenomena are observed in bean hypocotyls at the onset of phytoalexin synthesis in response to infection by incompatible and compatible races of C. lindemuthianum . In bean, both L-phenylalanine ammonia-lyase and chalcone synthase are encoded by multigene families and, at the protein level, both exhibit subunit and intact enzyme polymorphism. A number of less than full-length phenylalanine ammonialyase copy DNAs containing identical open reading frames have been produced from mRNA from elicitor-induced bean cells. Analysis of phenylalanine ammonia-lyase genomic clones predicts the presence of enzyme forms of differing amino acid sequence. In cultured bean cells, elicitor differentially induces the two apparent phenylalanine ammonia-lyase iso-forms with the lowest K m values. In addition to transcriptional control of the appearance of specific gene products, post-translational processes may result in increased subunit polymorphism for phenylalanine ammonia-lyase, and in the activation of chalcone isomerase. Changes in endogenous phenylpropanoid intermediate pools may signal the rapid removal of phenylalanine ammonia-lyase activity, in addition to exerting less specific inhibitory effects on the formation and/or activity of the mRNAs encoding phenylalanine ammonia-lyase and other phytoalexin biosynthetic enzymes.


2001 ◽  
Vol 28 (5) ◽  
pp. 425 ◽  
Author(s):  
Anna Rita Paolacci ◽  
Renato D'Ovidio ◽  
Rosita Marabottini ◽  
Cristina Nali ◽  
Giacomo Lorenzini ◽  
...  

On exposure to a realistic ozone dose, an enhanced mRNA accumulation for phenyalanine ammonia-lyase (EC 4.3.1.5), naringenin–chalcone synthase [malonyl–CoA:4-coumaroyl–CoA malonyltransferase (cyclising); EC 2.3.1.74] and chalcone isomerase [flavanone lyase (decyclising); EC 5.5.1.6] genes, whose products are involved in the biosynthesis of phenylpropanoid molecules, flavonoid pigments and isoflavonoid phytoalexins, was observed in primary leaves of the bean (Phaseolus vulgaris L.) cv. Pinto. This cultivar was previously known to be ozone-sensitive on the basis of the appearance of macroscopic foliar injury, but not in coeval leaves of the bean cv. Groffy, known to be ozone-resistant on the basis of the aforementioned criterion. Distinct time patterns were observed in Pinto leaves for the ozone-dependent enhanced mRNA accumulation for the aforementioned genes, which in all cases largely preceded the appearance of visible injury symptoms. These results lend support to the view of ozone as an abiotic elicitor of plant defence responses. By analogy with other case studies, it is also suggested that proneness to develop visible ozone symptoms might rest on a sequence of molecular events similar to that leading to the hypersensitive response during plant–pathogen incompatible interactions.


2002 ◽  
Vol 80 (3) ◽  
pp. 305-315 ◽  
Author(s):  
C Guillon ◽  
M St-Arnaud ◽  
C Hamel ◽  
S H Jabaji-Hare

The role of arbuscular mycorrhizas in response of plants to soilborne root pathogens is unclear. A time course study was conducted to monitor disease development and expression of mRNA for the defence-related genes phenylalanine ammonia lyase, chalcone synthase, chalcone isomerase, and hydroxyproline-rich glycoprotein in bean (Phasoelus vulgaris L.) plants colonized by the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and postinfected with the soilborne pathogen Rhizoctonia solani Kühn. Precolonization of bean plants by G. intraradices did not significantly reduce the severity of rot symptoms. RNA blot analysis of the defence-related genes revealed a systemic increase in the four defence genes in response to R. solani infections. On the other hand, precolonization of bean plants with G. intraradices elicited no change in phenylalanine ammonia lyase, chalcone synthase, and chalcone isomerase transcripts. A differential and systemic alteration in the expression of all four defence genes was observed in all tissues only during the pathogenic interaction of arbuscular mycorrhizal beans. Depending on the time after infection with R. solani and the tissue examined, varying responses from stimulation to suppression to no change in transcript levels were detected.Key words: induced resistance, defence-related genes, RNA analysis, Rhizoctonia solani, Glomus intraradices.


1981 ◽  
Vol 36 (7-8) ◽  
pp. 619-624 ◽  
Author(s):  
R. Spribille ◽  
G. Forkmann

Abstract Chalcone synthase activity was demonstrated in enzyme preparations from flowers of defined genotypes of Matthiola incana (stock). The product formed from 4-coumaroyl-CoA and malonyl-CoA was naringenin and not the isomeric chalcone, because chalcone isomerase was also present in the reaction mixture. Chalcone synthase activity could be detected only in flower extracts of genotypes with wild-type alleles at the locus f Thus, the interruption of the anthocyanin pathway in white flowering lines with recessive alleles (ff) of this gene is clearly due to a lack of this enzyme activity. Independent on the genetic state of the locus b which controls the formation of pelargonidin or cyanidin, respectively, in the flowers, 4-coumaroyl-CoA was the only suitable substrate for the condensation reaction.


Sign in / Sign up

Export Citation Format

Share Document