scholarly journals Unraveling the Biochemical Base of Dahlia Flower Coloration

2008 ◽  
Vol 3 (8) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Heidi Halbwirth ◽  
Gerlinde Muster ◽  
Karl Stich

Dahlia ( Dahlia variabilis) exists in a dazzling array of cultivars, showing red, orange, magenta, lilac, yellow and white flower color, which is exclusively based on the presence of flavonoids and biochemically related compounds. Red hues (red, orange, magenta, lilac) are a result of anthocyanin accumulation in varying concentration and composition, while a yellow color is based on the formation of 6′-deoxychalcones in the petals. Red dahlia pigments are all derived from pelargonidin and cyanidin. Delphinidin derivatives are not formed due to the absence of flavonoid 3′,5′-hydroxylase in dahlia petals, which provides an explanation for the lack of blue dahlia flowers. Orange, lilac and rose cultivars are characterized by a lower anthocyanin content compared to many red cultivars. We investigated 198 cultivars for the presence of flavonoid enzymes. The activities of chalcone isomerase (CHI), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), flavanone 3-hydroxylase (FHT), flavone synthase II (FNSII), flavonol synthase (FLS) and flavonoid 3′-hydroxylase (F3′H) were demonstrated in enzyme preparations of dahlia petals. CHI accepted 6′-hydroxychalcones as substrates, but did not catalyze the conversion of 6′-deoxychalcones to the corresponding flavanones. White cultivars were frequently characterized by the lack of DFR activity, whereas in many yellow cultivars neither FHT nor DFR activity could be shown.

Plant Science ◽  
2002 ◽  
Vol 163 (2) ◽  
pp. 253-263 ◽  
Author(s):  
Yukiko Ueyama ◽  
Ken-ichi Suzuki ◽  
Masako Fukuchi-Mizutani ◽  
Yuko Fukui ◽  
Kiyoshi Miyazaki ◽  
...  

1987 ◽  
Vol 42 (11-12) ◽  
pp. 1193-1199 ◽  
Author(s):  
K. Stich ◽  
G. Forkmann

Flowers of Sinningia (syn. Rechsteineria) cardinalis contain glycosides of the flavones apigenin (4′-OH) and luteolin (3′,4′-OH) respectively, and of the related 3-deoxyanthocyanidins apigeninidin and luteolinidin. Studies on substrate specificity of the key enzyme of flavonoid biosynthesis, chalcone synthase, revealed that the 3′,4′-hydroxylated flavonoids are formed by hydroxylation of flavonoid compounds rather than by incorporation of caffeoyl-CoA into the flavonoid skeleton during the condensation reaction. In fact, flavonoid 3′-hydroxylase activity could be demonstrat­ed in the microsomal fraction of the flower extracts. The enzyme catalyses hydroxylation of naringenin and apigenin in the 3′-position to eriodictyol and luteolin, respectively, with NADPH as cofactor. Besides flavanone 3′-hydroxylase a further NADPH-dependent enzyme activity (flavone synthase II) was observed in the microsomal fraction catalysing the oxidation of naringenin to apigenin and of eriodictyol to luteolin. The Cytochrome P-450 inhibitor ancymidol was found to abolish completely flavone synthase II activity, whereas flavonoid 3′-hydroxylase activity was not impaired.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yun Zhao ◽  
Ting Min ◽  
Miaojin Chen ◽  
Hongxun Wang ◽  
Changqing Zhu ◽  
...  

Red coloration contributes to fruit quality and is determined by anthocyanin content in peach (Prunus persica). Our previous study illustrated that anthocyanin accumulation is strongly regulated by light, and the effect of induction differs according to light quality. Here we showed that both ultraviolet-A (UVA) and ultraviolet-B (UVB) irradiation promoted anthocyanin biosynthesis in “Hujingmilu” peach fruit, and a combination of UVA and UVB had additional effects. The expression of anthocyanin biosynthesis and light signaling related genes, including transcription factor genes and light signaling elements, were induced following UV irradiation as early as 6 h post-treatment, earlier than apparent change in coloration which occurred at 72 h. To investigate the molecular mechanisms for UVA- and UVB-induced anthocyanin accumulation, the genes encoding ELONGATED HYPOCOTYL 5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), Cryptochrome (CRY), and UV RESISTANCE LOCUS 8 (UVR8) in peach were isolated and characterized through functional complementation in corresponding Arabidopsis (Arabidopsis thaliana) mutants. PpHY5 and PpCOP1.1 restored hypocotyl length and anthocyanin content in Arabidopsis mutants under white light; while PpCRY1 and PpUVR8.1 restored AtHY5 expression in Arabidopsis mutants in response to UV irradiation. Arabidopsis PpHY5/hy5 transgenic lines accumulated higher amounts of anthocyanin under UV supplementation (compared with weak white light only), especially when UVA and UVB were applied together. These data indicated that PpHY5, acting as AtHY5 counterpart, was a vital regulator in UVA and UVB signaling pathway. In peach, the expression of PpHY5 was up-regulated by UVA and UVB, and PpHY5 positively regulated both its own transcription by interacting with an E-box in its own promoter, and the transcription of the downstream anthocyanin biosynthetic genes chalcone synthase 1 (PpCHS1), chalcone synthase 2 (PpCHS2), and dihydroflavonol 4-reductase (PpDFR1) as well as the transcription factor gene PpMYB10.1. In summary, functional evidence supports the role of PpHY5 in UVA and UVB light transduction pathway controlling anthocyanin biosynthesis. In peach this is via up-regulation of expression of genes encoding biosynthetic enzymes, as well as the transcription factor PpMYB10.1 and PpHY5 itself.


HortScience ◽  
2018 ◽  
Vol 53 (8) ◽  
pp. 1102-1108
Author(s):  
Qianqian Shi ◽  
Long Li ◽  
Lin Zhou ◽  
Yan Wang

Paeonia delavayi is a species endemic to Southwest China and an important genetic resource for flower color breeding of tree peonies. The mechanisms underlying the flower coloration of this plant have not been fully elucidated. In this article, the petals of yellow-colored individual (Pl) and purple–red-colored individual (Pd) of P. delavayi were studied. And anatomical observations revealed that a large amount of yellow protoplasts and a small amount of colorless protoplasts were located in the yellow-colored Pl petals, whereas a mixture of purple, red, and pink protoplasts were observed in the purple–red-colored Pd petals. The Pl cells were subrotund and flat, whereas the Pd cells were irregularly polygon-shaped and bulging. Chemical analyses were performed, and the results indicated that significant differences occurred between the cell sap pH of the Pl and Pd flowers and large differences occurred in the contents of Fe and Al between Pl and Pd. Cyanidin- and peonidin-based anthocyanins with flavones and flavonols as copigments determined the Pd flower color, whereas chalcone 2 ′G with apigenin 7-O-neohesperidoside and chrysoeriol 7-O-glucoside as copigments determined the yellow color of Pl. Correspondingly, the genes dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were significantly highly expressed in Pd, whereas chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavone synthase (FNS), flavonol synthase (FLS), flavonoid 7-O-glycosyltransferase (7GT), and 2′4′6′4-tetrahydroxychalcone 2′-glucosyltransferase (THC) had high transcript levels in Pl relative to Pd. The results indicate that the color variation of P. delavayi petals may be related to a delicately controlled balance of the aforementioned factors.


1981 ◽  
Vol 36 (7-8) ◽  
pp. 619-624 ◽  
Author(s):  
R. Spribille ◽  
G. Forkmann

Abstract Chalcone synthase activity was demonstrated in enzyme preparations from flowers of defined genotypes of Matthiola incana (stock). The product formed from 4-coumaroyl-CoA and malonyl-CoA was naringenin and not the isomeric chalcone, because chalcone isomerase was also present in the reaction mixture. Chalcone synthase activity could be detected only in flower extracts of genotypes with wild-type alleles at the locus f Thus, the interruption of the anthocyanin pathway in white flowering lines with recessive alleles (ff) of this gene is clearly due to a lack of this enzyme activity. Independent on the genetic state of the locus b which controls the formation of pelargonidin or cyanidin, respectively, in the flowers, 4-coumaroyl-CoA was the only suitable substrate for the condensation reaction.


1988 ◽  
Vol 43 (3-4) ◽  
pp. 311-314 ◽  
Author(s):  
K. Stich ◽  
G. Forkmann

Columnidin, the characteristic 3-deoxyanthocyanidin of some Columnea species, possesses the 3′,4′-B-ring hydroxylation pattern of luteolinidin and an additional hydroxyl group at the A-ring, most likely in the 8-position. Studies on substrate specificity of chalcone synthase and flavanone 4-reductase and the demonstration of high flavonoid 3′-hydroxylase activity revealed that the 3′-hydroxyl group of the B-ring of columnidin is introduced at the flavanone stage by hydroxylation of naringenin to eriodictyol. Enzymatic hydroxylation of the A-ring, however, could neither be observed with soluble enzyme preparation nor with microsomal fraction. Most probably this step first occurs at the anthocyanidin level. Besides flavonoid 3′-hydroxylase the microsomal fraction of Columnea flower extracts contains flavone synthase II activity catalysing desaturation of flavanones to flavones with NADPH as co-factor. The presence of some apigenin, appreciable amounts of luteolin and of the 3′,4′-hydroxylated flavan-4-ol luteoforol in the flowers confirm the enzymatic data.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1073
Author(s):  
Meng-Bo Tian ◽  
Lin Yuan ◽  
Ming-Yuan Zheng ◽  
Zhu-Mei Xi

Anthocyanins are vital components of plant secondary metabolites, and are also the most important coloring substances in wine. Teinturier cultivars are rich in anthocyanins. However, the differences in anthocyanin accumulation and profiles between teinturier and non-teinturier cultivars have not been reported. In this study, Yan 73 and Dunkelfelder were selected as the experimental materials, and three non-teinturier cultivars were used for comparison. LC-MS and qRT-PCR were used to determine the individual anthocyanin contents and the relative gene expression. The results show that the total anthocyanin content of the teinturier cultivars was considerably higher than that in non-teinturier cultivars, and the levels of individual anthocyanins increased gradually during ripening. Lower ratios of modified anthocyanins were found in the teinturier cultivars, which was not only due to the high expression level of VvUFGT and VvGST4, but also due to the relatively low expression of VvOMT in these cultivars. Cluster analysis of gene expression and anthocyanin accumulation showed that VvUFGT is related to anthocyanin accumulation, and that AM1 is related to the synthesis and transport of methylated anthocyanins. Our results will be useful for further clarifying the pathways of anthocyanin synthesis, modification, and transport in teinturier cultivars.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Amanda Donoso ◽  
Constanza Rivas ◽  
Alan Zamorano ◽  
Álvaro Peña ◽  
Michael Handford ◽  
...  

Flower colour is mainly due to the accumulation of flavonoids, carotenoids and betalains in the petals. Of these pigments, flavonoids are responsible for a wide variety of colours ranging from pale yellow (flavones, flavonols and flavanodiols) to blue-violet (anthocyanins). This character plays a crucial ecological role by attracting and guiding pollinators. Moreover, in the ornamental plants market, colour has been consistently identified as the main feature chosen by consumers when buying flowers. Considering the importance of this character, the aim of this study was to evaluate flower colour in the native Chilean geophyte Alstroemeria pallida, by using three different approaches. Firstly, the phenotype was assessed using both a colour chart and a colourimeter, obtaining CIELab parameters. Secondly, the anthocyanin content of the pigmented tepals was evaluated by high-performance liquid chromatography (HPLC), and finally, the expression of two key flavonoid genes, chalcone synthase (CHS) and anthocyanidin synthase (ANS) was analysed using real-time polymerase chain reaction (PCR). Visual evaluation of A. pallida flower colour identified 5 accessions, ranging from white (Royal Horticultural Society (RHS) N999D) to pink (RHS 68C). Moreover, this visual evaluation of the accessions correlated highly with the CIELab parameters obtained by colourimetry. An anthocyanidin corresponding to a putative 6-hydroxycyanidin was identified, which was least abundant in the white accession (RHS N999D). Although CHS was not expressed differentially between the accessions, the expression of ANS was significantly higher in the accession with pink flowers (RHS 68C). These results suggest a correlation between phenotype, anthocyanin content and ANS expression for determining flower colour of A. pallida, which could be of interest for further studies, especially those related to the breeding of this species with ornamental value.


Sign in / Sign up

Export Citation Format

Share Document