scholarly journals Faculty Opinions recommendation of Developmental plasticity allows outside-in immune responses by resident memory T cells.

Author(s):  
Gabrielle Belz
2020 ◽  
Vol 21 (4) ◽  
pp. 412-421 ◽  
Author(s):  
Raissa Fonseca ◽  
Lalit K. Beura ◽  
Clare F. Quarnstrom ◽  
Hazem E. Ghoneim ◽  
Yiping Fan ◽  
...  

Author(s):  
Carla Cendón ◽  
Weijie Du ◽  
Pawel Durek ◽  
Tobias Alexander ◽  
Lindsay Serene ◽  
...  

AbstractWhile it is generally accepted that tissue-resident memory T lymphocytes protect host tissues from secondary immune challenges, it is unclear whether, and if so, how they contribute to systemic secondary immune responses. Here we show that in human individuals with an established immune memory to measles, mumps and rubella viruses, when challenged with the measles-mumps-rubella (MMR) vaccine again, tissue-resident memory CD4+ T cells are mobilized into the blood within 16 to 48 hours after vaccination. These cells then leave the blood again, and apparently contribute to the systemic secondary immune reaction, as is evident from the representation of mobilized T cell receptor Vβ clonotypes among newly generated circulating memory T lymphocytes, from day 7 onwards. Mobilization of the tissue-resident memory T cells is cognate, in that memory T lymphocytes recognizing other antigens, e.g. tetanus toxin, are not mobilized, unless they cross-react with the vaccine. These data originally demonstrate the essential contribution of tissue-resident memory T cells to secondary systemic immune responses, confirming that immunological memories to systemic pathogens are maintained (also) by tissue-resident memory T cells. In practical terms, the present work defines day 1 to 2 after antigenic challenge as a time window to assess the entire immunological T cell memory for a certain pathogen, including mobilized tissue-resident memory T cells, and its correlates of effectivity.Capsule summaryThe study demonstrates the rapid and cognate mobilization of tissue-resident memory CD4+ T cells into the blood upon antigenic rechallenge, and their contribution to secondary systemic immune responses.


2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Karolina Okła ◽  
Donna L. Farber ◽  
Weiping Zou

Tissue-resident memory T cells (TRM) represent a heterogeneous T cell population with the functionality of both effector and memory T cells. TRM express residence gene signatures. This feature allows them to traffic to, reside in, and potentially patrol peripheral tissues, thereby enforcing an efficient long-term immune-protective role. Recent studies have revealed TRM involvement in tumor immune responses. TRM tumor infiltration correlates with enhanced response to current immunotherapy and is often associated with favorable clinical outcome in patients with cancer. Thus, targeting TRM may lead to enhanced cancer immunotherapy efficacy. Here, we review and discuss recent advances on the nature of TRM in the context of tumor immunity and immunotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Youkun Qian ◽  
Yicheng Zhu ◽  
Yangyang Li ◽  
Bin Li

SARS-CoV-2 is wreaking havoc around the world. To get the world back on track, hundreds of vaccines are under development. A deeper understanding of how the immune system responds to SARS-CoV-2 re-infection will certainly help. Studies have highlighted various aspects of T cell response in resolving acute infection and preventing re-infections. Lung resident memory T (TRM) cells are sentinels in the secondary immune response. They are mostly differentiated from effector T cells, construct specific niches and stay permanently in lung tissues. If the infection recurs, locally activated lung TRM cells can elicit rapid immune response against invading pathogens. In addition, they can significantly limit tumor growth or lead to pathologic immune responses. Vaccines targeting TRM cells are under development, with the hope to induce stable and highly reactive lung TRM cells through mucosal administration or “prime-and-pull” strategy. In this review, we will summarize recent advances in lung TRM cell generation and maintenance, explore their roles in different diseases and discuss how these cells may guide the development of future vaccines targeting infectious disease, cancer, and pathologic immune response.


Author(s):  
Cheng‐Chih Hsiao ◽  
Nina L. Fransen ◽  
Aletta M.R. den Bosch ◽  
Kim I.M. Brandwijk ◽  
Inge Huitinga ◽  
...  

Author(s):  
Felix M. Behr ◽  
Ammarina Beumer‐Chuwonpad ◽  
Natasja A.M. Kragten ◽  
Thomas H. Wesselink ◽  
Regina Stark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document