Faculty Opinions recommendation of Photoaffinity labeling identifies an intersubunit steroid-binding site in heteromeric GABA type A (GABAA) receptors.

Author(s):  
Gustav Akk
2020 ◽  
Vol 295 (33) ◽  
pp. 11495-11512 ◽  
Author(s):  
Selwyn S. Jayakar ◽  
David C. Chiara ◽  
Xiaojuan Zhou ◽  
Bo Wu ◽  
Karol S. Bruzik ◽  
...  

Allopregnanolone (3α5α-P), pregnanolone, and their synthetic derivatives are potent positive allosteric modulators (PAMs) of GABAA receptors (GABAARs) with in vivo anesthetic, anxiolytic, and anti-convulsant effects. Mutational analysis, photoaffinity labeling, and structural studies have provided evidence for intersubunit and intrasubunit steroid-binding sites in the GABAAR transmembrane domain, but revealed only little definition of their binding properties. Here, we identified steroid-binding sites in purified human α1β3 and α1β3γ2 GABAARs by photoaffinity labeling with [3H]21-[4-(3-(trifluoromethyl)-3H-diazirine-3-yl)benzoxy]allopregnanolone ([3H]21-pTFDBzox-AP), a potent GABAAR PAM. Protein microsequencing established 3α5α-P inhibitable photolabeling of amino acids near the cytoplasmic end of the β subunit M4 (β3Pro-415, β3Leu-417, and β3Thr-418) and M3 (β3Arg-309) helices located at the base of a pocket in the β+–α− subunit interface that extends to the level of αGln-242, a steroid sensitivity determinant in the αM1 helix. Competition photolabeling established that this site binds with high affinity a structurally diverse group of 3α-OH steroids that act as anesthetics, anti-epileptics, and anti-depressants. The presence of a 3α-OH was crucial: 3-acetylated, 3-deoxy, and 3-oxo analogs of 3α5α-P, as well as 3β-OH analogs that are GABAAR antagonists, bound with at least 1000-fold lower affinity than 3α5α-P. Similarly, for GABAAR PAMs with the C-20 carbonyl of 3α5α-P or pregnanolone reduced to a hydroxyl, binding affinity is reduced by 1,000-fold, whereas binding is retained after deoxygenation at the C-20 position. These results provide a first insight into the structure-activity relationship at the GABAAR β+–α− subunit interface steroid-binding site and identify several steroid PAMs that act via other sites.


2020 ◽  
Vol 133 (3) ◽  
pp. 583-594 ◽  
Author(s):  
Megan McGrath ◽  
Helen Hoyt ◽  
Andrea Pence ◽  
Selwyn S. Jayakar ◽  
Xiaojuan Zhou ◽  
...  

Background Recent cryo-electron microscopic imaging studies have shown that in addition to binding to the classical extracellular benzodiazepine binding site of the α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor, diazepam also binds to etomidate binding sites located in the transmembrane receptor domain. Because such binding is characterized by low modulatory efficacy, the authors hypothesized that diazepam would act in vitro and in vivo as a competitive etomidate antagonist. Methods The concentration-dependent actions of diazepam on 20 µM etomidate-activated and 6 µM GABA-activated currents were defined (in the absence and presence of flumazenil) in oocyte-expressed α1β3γ2L GABAA receptors using voltage clamp electrophysiology. The ability of diazepam to inhibit receptor labeling of purified α1β3γ2L GABAA receptors by 3[H]azietomidate was assessed in photoaffinity labeling protection studies. The impact of diazepam (in the absence and presence of flumazenil) on the anesthetic potencies of etomidate and ketamine was compared in a zebrafish model. Results At nanomolar concentrations, diazepam comparably potentiated etomidate-activated and GABA-activated GABAA receptor peak current amplitudes in a flumazenil-reversible manner. The half-maximal potentiating concentrations were 39 nM (95% CI, 27 to 55 nM) and 26 nM (95% CI, 16 to 41 nM), respectively. However, at micromolar concentrations, diazepam reduced etomidate-activated, but not GABA-activated, GABAA receptor peak current amplitudes in a concentration-dependent manner with a half-maximal inhibitory concentration of 9.6 µM (95% CI, 7.6 to 12 µM). Diazepam (12.5 to 50 µM) also right-shifted the etomidate-concentration response curve for direct activation without reducing the maximal response and inhibited receptor photoaffinity labeling by 3[H]azietomidate. When administered with flumazenil, 50 µM diazepam shifted the etomidate (but not the ketamine) concentration–response curve for anesthesia rightward, increasing the etomidate EC50 by 18-fold. Conclusions At micromolar concentrations and in the presence of flumazenil to inhibit allosteric modulation via the classical benzodiazepine binding site of the GABAA receptor, diazepam acts as an in vitro and in vivo competitive etomidate antagonist. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2011 ◽  
Vol 286 (25) ◽  
pp. 22456-22468 ◽  
Author(s):  
Tzu-Ting Chiou ◽  
Bevan Bonhomme ◽  
Hongbing Jin ◽  
Celia P. Miralles ◽  
Haiyan Xiao ◽  
...  

1977 ◽  
Vol 129 (7) ◽  
pp. 788-794 ◽  
Author(s):  
James C. Warren ◽  
J.Robert Mueller ◽  
Chang-Chen Chin

Sign in / Sign up

Export Citation Format

Share Document