scholarly journals Faculty Opinions recommendation of Cnidarian-bilaterian comparison reveals the ancestral regulatory logic of the β-catenin dependent axial patterning.

Author(s):  
Benjamin Feldman
Keyword(s):  
Cell ◽  
1992 ◽  
Vol 68 (2) ◽  
pp. 283-302 ◽  
Author(s):  
William McGinnis ◽  
Robb Krumlauf

Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 423-434 ◽  
Author(s):  
M.C. Lane ◽  
W.C. Smith

The marginal zone in Xenopus laevis is proposed to be patterned with dorsal mesoderm situated near the upper blastoporal lip and ventral mesoderm near the lower blastoporal lip. We determined the origins of the ventralmost mesoderm, primitive blood, and show it arises from all vegetal blastomeres at the 32-cell stage, including blastomere C1, a progenitor of Spemann's organizer. This demonstrates that cells located at the upper blastoporal lip become ventral mesoderm, not solely dorsal mesoderm as previously believed. Reassessment of extant fate maps shows dorsal mesoderm and dorsal endoderm descend from the animal region of the marginal zone, whereas ventral mesoderm descends from the vegetal region of the marginal zone, and ventral endoderm descends from cells located vegetal of the bottle cells. Thus, the orientation of the dorsal-ventral axis of the mesoderm and endoderm is rotated 90(degrees) from its current portrayal in fate maps. This reassessment leads us to propose revisions in the nomenclature of the marginal zone and the orientation of the axes in pre-gastrula Xenopus embryos.


Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2489-2498 ◽  
Author(s):  
F. Emily-Fenouil ◽  
C. Ghiglione ◽  
G. Lhomond ◽  
T. Lepage ◽  
C. Gache

In the sea urchin embryo, the animal-vegetal axis is defined before fertilization and different embryonic territories are established along this axis by mechanisms which are largely unknown. Significantly, the boundaries of these territories can be shifted by treatment with various reagents including zinc and lithium. We have isolated and characterized a sea urchin homolog of GSK3beta/shaggy, a lithium-sensitive kinase which is a component of the Wnt pathway and known to be involved in axial patterning in other embryos including Xenopus. The effects of overexpressing the normal and mutant forms of GSK3beta derived either from sea urchin or Xenopus were analyzed by observation of the morphology of 48 hour embryos (pluteus stage) and by monitoring spatial expression of the hatching enzyme (HE) gene, a very early gene whose expression is restricted to an animal domain with a sharp border roughly coinciding with the future ectoderm / endoderm boundary. Inactive forms of GSK3beta predicted to have a dominant-negative activity, vegetalized the embryo and decreased the size of the HE expression domain, apparently by shifting the boundary towards the animal pole. These effects are similar to, but even stronger than, those of lithium. Conversely, overexpression of wild-type GSK3beta animalized the embryo and caused the HE domain to enlarge towards the vegetal pole. Unlike zinc treatment, GSK3beta overexpression thus appeared to provoke a true animalization, through extension of the presumptive ectoderm territory. These results indicate that in sea urchin embryos the level of GSKbeta activity controls the position of the boundary between the presumptive ectoderm and endoderm territories and thus, the relative extent of these tissue layers in late embryos. GSK3beta and probably other downstream components of the Wnt pathway thus mediate patterning both along the primary AV axis of the sea urchin embryo and along the dorsal-ventral axis in Xenopus, suggesting a conserved basis for axial patterning between invertebrate and vertebrate in deuterostomes.


2014 ◽  
Vol 16 (6) ◽  
pp. 382-393 ◽  
Author(s):  
Emily A. Buchholtz ◽  
Kaisa L. Wayrynen ◽  
Iris W. Lin
Keyword(s):  

2015 ◽  
Vol 112 (18) ◽  
pp. 5732-5737 ◽  
Author(s):  
Ya-Lin Huang ◽  
Zeinab Anvarian ◽  
Gabriele Döderlein ◽  
Sergio P. Acebron ◽  
Christof Niehrs

DuringXenopusdevelopment, Wnt signaling is thought to function first after midblastula transition to regulate axial patterning via β-catenin–mediated transcription. Here, we report that Wnt/glycogen synthase kinase 3 (GSK3) signaling functions posttranscriptionally already in mature oocytes via Wnt/stabilization of proteins (STOP) signaling. Wnt signaling is induced in oocytes after their entry into meiotic metaphase II and declines again upon exit into interphase. Wnt signaling inhibits Gsk3 and thereby protects proteins from polyubiquitination and degradation in mature oocytes. In a protein array screen, we identify a cluster of mitotic effector proteins that are polyubiquitinated in a Gsk3-dependent manner inXenopus. Consequently inhibition of maternal Wnt/STOP signaling, but not β-catenin signaling, leads to early cleavage arrest after fertilization. The results support a novel role for Wnt signaling in cell cycle progression independent of β-catenin.


Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4509-4521 ◽  
Author(s):  
Romina Ponzielli ◽  
Martine Astier ◽  
Aymeric Chartier ◽  
Armel Gallet ◽  
Pascal Thérond ◽  
...  

The Drosophila larval cardiac tube is composed of 104 cardiomyocytes that exhibit genetic and functional diversity. The tube is divided into the aorta and the heart proper that encompass the anterior and posterior parts of the tube, respectively. Differentiation into aorta and heart cardiomyocytes takes place during embryogenesis. We have observed living embryos to correlate morphological changes occurring during the late phases of cardiogenesis with the acquisition of organ function, including functional inlets, or ostiae. Cardiac cells diversity originates in response to two types of spatial information such that cells differentiate according to their position, both within a segment and along the anteroposterior axis. Axial patterning is controlled by homeotic genes of the Bithorax Complex (BXC) which are regionally expressed within the cardiac tube in non-overlapping domains. Ultrabithorax (Ubx) is expressed in the aorta whereas abdominal A (abd-A) is expressed in the heart, with the exception of the four most posterior cardiac cells which express Abdominal B (Abd-B). Ubx and abd-A functions are required to confer an aorta or a heart identity on cardiomyocytes, respectively. The anterior limit of the expression domain of Ubx, abd-A and Abd-B is independent of the function of the other genes. In contrast, abd-A represses Ubx expression in the heart and ectopic overexpression of abd-A transforms aorta cells into heart cardiomyocytes. Taken together, these results support the idea that BXC homeotic genes in the cardiac tube conform to the posterior prevalence rule. The cardiac tube is also segmentally patterned and each metamere contains six pairs of cardioblasts that are genetically diverse. We show that the transcription of seven up (svp), which is expressed in the two most posterior pairs of cardioblasts in each segment, is dependent on hedgehog (hh) signaling from the dorsal ectoderm. In combination with the axial information furnished by abd-A, the segmental hh-dependent information leads to the differentiation of the six pairs of svp-expressing cells into functional ostiae. Movies available on-line


Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3325-3334 ◽  
Author(s):  
Ira E. Clark ◽  
Krista C. Dobi ◽  
Heather K. Duchow ◽  
Anna N. Vlasak ◽  
Elizabeth R. Gavis

Translational repression of maternal nanos (nos) mRNA by a cis-acting Translational Control Element (TCE) in the nos 3′UTR is critical for anterior-posterior patterning of the Drosophila embryo. We show, through ectopic expression experiments, that the nos TCE is capable of repressing gene expression at later stages of development in neuronal cells that regulate the molting cycle. Our results predict additional targets of TCE-mediated repression within the nervous system. They also suggest that mechanisms that regulate maternal mRNAs, like TCE-mediated repression, may function more widely during development to spatially or temporally control gene expression.


2002 ◽  
Vol 225 (4) ◽  
pp. 434-447 ◽  
Author(s):  
Mary Constance Lane ◽  
Michael D. Sheets
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document