maternal mrnas
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 18)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Toshiyuki Goto ◽  
Shuhei Torii ◽  
Aoi Kondo ◽  
Junji Kawakami ◽  
Haruka Yagi ◽  
...  

AbstractAxis formation is one of the most important events occurring at the beginning of animal development. In the ascidian egg, the antero-posterior axis is established at this time owing to a dynamic cytoplasmic movement called cytoplasmic and cortical reorganisation. During this movement, mitochondria, endoplasmic reticulum (ER), and maternal mRNAs (postplasmic/PEM RNAs) are translocated to the future posterior side. Although accumulating evidence indicates the crucial roles played by the asymmetrical localisation of these organelles and the translational regulation of postplasmic/PEM RNAs, the organisation of ER has not been described in sufficient detail to date owing to technical difficulties. In this study, we developed three different multiple staining protocols for visualising the ER in combination with mitochondria, microtubules, or mRNAs in whole-mount specimens. We defined the internally expanded “dense ER” using these protocols and described cisterna-like structures of the dense ER using focused ion beam-scanning electron microscopy. Most importantly, we described the dynamic changes in the colocalisation of postplasmic/PEM mRNAs and dense ER; for example, macho-1 mRNA was detached and excluded from the dense ER during the second phase of ooplasmic movements. These detailed descriptions of the association between maternal mRNA and ER can provide clues for understanding the translational regulation mechanisms underlying axis determination during ascidian early embryogenesis.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 969
Author(s):  
Meirong Zhang ◽  
Pingzhen Xu ◽  
Tao Chen

Silkworm larval–pupal metamorphosis and the first half of pupal–adult development occur during oogenesis from previtellogenesis to vitellogenesis and include two peaks of the hemolymph ecdysteroid titer. Moreover, a rise in 20-hydroxyecdysone titer in early pupae can trigger the first major transition from previtellogenesis to vitellogenesis in silkworm oogenesis. In this study, we first investigated the expression patterns of 66 maternal genes in the ovary at the wandering stage. We then examined the developmental expression profiles in six time-series samples of ovaries or ovarioles by reverse transcription–quantitative PCR. We found that the transcripts of 22 maternal genes were regulated by 20-hydroxyecdysone in the isolated abdomens of the pupae following a single injection of 20-hydroxyecdysone. This study is the first to determine the relationship between 20-hydroxyecdysone and maternal genes during silkworm oogenesis. These findings provide a basis for further research into the embryonic development of Bombyx mori.


Development ◽  
2021 ◽  
Author(s):  
Mansour Aboelenain ◽  
Karen Schindler

Mammalian oocytes are transcriptionally quiescent, and meiosis and early embryonic divisions rely on translation of stored maternal mRNAs. Activation of these mRNAs is mediated by polyadenylation. Cytoplasmic polyadenylation binding element 1 (CPEB1) regulates activates mRNA polyadenylation. One message is Aurora kinase C (Aurkc), encoding a protein that regulates chromosome segregation. We previously demonstrated that AURKC levels are upregulated in oocytes lacking Aurora kinase B (AURKB), and this upregulation caused increased aneuploidy rates, a role we investigate here. Using genetic and pharmacologic approaches, we found that AURKB negatively regulates CPEB1-dependent translation of many messages. To determine why translation is increased, we evaluated Aurora kinase A (AURKA), a kinase that activates CPEB1 in other organisms. We find that AURKA activity is increased in Aurkb knockout oocytes and demonstrate that this increase drives the excess translation. Importantly, removal of one copy of Aurka from the Aurkb knockout strain background, reduces aneuploidy rates. This study demonstrates that AURKA is required for CPEB1-dependent translation, and it describes a new AURKB requirement to maintain translation levels through AURKA, a function critical to generating euploid eggs.


Author(s):  
Christopher R. Neil ◽  
Samantha P. Jeschonek ◽  
Sarah E. Cabral ◽  
Liam C. O'Connell ◽  
Erin A. Powrie ◽  
...  

RNP granules are membrane-less compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are localized as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here, we demonstrate that RNPs containing vegetally localized RNAs represent a new class of cytoplasmic RNP granule, termed Localization-bodies (L-bodies). We show that L-bodies contain a dynamic protein-containing phase surrounding a non-dynamic RNA-containing phase. Our results support a role for RNA as a critical component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.


Author(s):  
Peter Z Schall ◽  
Keith E. Latham

Oogenesis is a complex process resulting in the production of a truly remarkable cell-the oocyte. Oocytes execute many unique processes and functions such as meiotic segregation of maternal genetic material, and essential life-generating functions after fertilization including post-transcriptional support of essential homeostatic and metabolic processes, and activation and reprogramming of the embryonic genome. An essential goal for understanding female fertility and infertility in mammals is to discover critical features driving the production of quality oocytes, particularly the complex regulation of oocyte maternal mRNAs. We report here the first in-depth meta-analysis of oocyte maturation-associated transcriptome changes, using eight data sets encompassing 94 RNAseq libraries for human, rhesus monkey, mouse, and cow. A majority of maternal mRNAs are regulated in a species-restricted manner, highlighting considerable divergence in oocyte transcriptome handling during maturation. We identified 121 mRNAs changing in relative abundance similarly across all four species (92 of high homology), and 993 (670 high homology) mRNAs regulated similarly in at least three of the four species, corresponding to just 0.84% and 6.9% of mRNAs analyzed. Ingenuity Pathway Analysis (IPA) revealed an association of these shared mRNAs with many shared pathways and functions, most prominently oxidative phosphorylation and mitochondrial function. These shared functions were reinforced further by primate-specific and species-specific DEGs. Thus, correct down-regulation of mRNAs related to oxidative phosphorylation and mitochondrial function is a major shared feature of mammalian oocyte maturation.


2021 ◽  
Author(s):  
Ilana Buchumenski ◽  
Karoline Holler ◽  
Lior Appelbaum ◽  
Eli Eisenberg ◽  
Jan Philipp Junker ◽  
...  

Abstract A-to-I RNA editing is a common post transcriptional mechanism, mediated by the Adenosine deaminase that acts on RNA (ADAR) enzymes, that increases transcript and protein diversity. The study of RNA editing is limited by the absence of editing maps for most model organisms, hindering the understanding of its impact on various physiological conditions. Here, we mapped the vertebrate developmental landscape of A-to-I RNA editing, and generated the first comprehensive atlas of editing sites in zebrafish. Tens of thousands unique editing events and 149 coding sites were identified with high-accuracy. Some of these edited sites are conserved between zebrafish and humans. Sequence analysis of RNA over seven developmental stages revealed high levels of editing activity in early stages of embryogenesis, when embryos rely on maternal mRNAs and proteins. In contrast to the other organisms studied so far, the highest levels of editing were detected in the zebrafish ovary and testes. This resource can serve as the basis for understanding of the role of editing during zebrafish development and maturity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Piergiuseppe Quarato ◽  
Meetali Singh ◽  
Eric Cornes ◽  
Blaise Li ◽  
Loan Bourdon ◽  
...  

AbstractInheritance and clearance of maternal mRNAs are two of the most critical events required for animal early embryonic development. However, the mechanisms regulating this process are still largely unknown. Here, we show that together with maternal mRNAs,C. elegansembryos inherit a complementary pool of small non-coding RNAs that facilitate the cleavage and removal of hundreds of maternal mRNAs. These antisense small RNAs are loaded into the maternal catalytically-active Argonaute CSR-1 and cleave complementary mRNAs no longer engaged in translation in somatic blastomeres. Induced depletion of CSR-1 specifically during embryonic development leads to embryonic lethality in a slicer-dependent manner and impairs the degradation of CSR-1 embryonic mRNA targets. Given the conservation of Argonaute catalytic activity, we propose that a similar mechanism operates to clear maternal mRNAs during the maternal-to-zygotic transition across species.


2021 ◽  
Author(s):  
Anna H. York-Andersen ◽  
Benjamin W. Wood ◽  
Elise L. Wilby ◽  
Alexander S. Berry ◽  
Timothy T. Weil

ABSTRACTEgg activation is a series of highly coordinated processes that prepare the mature oocyte for embryogenesis. Typically associated with fertilisation, egg activation results in many downstream outcomes, including the resumption of the meiotic cell cycle, translation of maternal mRNAs and cross-linking of the vitelline membrane. While some aspects of egg activation, such as initiation factors in mammals and environmental cues in sea animals, have been well-documented, the mechanics of egg activation in insects are less well understood. For many insects, egg activation can be triggered independently of fertilisation. In Drosophila melanogaster, egg activation occurs in the oviduct resulting in a single calcium wave propagating from the posterior pole of the oocyte.Here we use physical manipulations, genetics and live imaging to demonstrate the requirement of a volume increase for calcium entry at egg activation in mature Drosophila oocytes. The addition of water, modified with sucrose to a specific osmolarity, is sufficient to trigger the calcium wave in the mature oocyte and the downstream events associated with egg activation. We show that the swelling process is regulated by the conserved osmoregulatory channels, aquaporins (AQPs) and DEGenerin/Epithelial Na+ (DEG/ENaC) channels. Furthermore, through pharmacological and genetic disruption, we reveal a concentration-dependent requirement of Trpm channels to transport calcium, most likely from the perivitelline space, across the plasma membrane into the mature oocyte.Our data establishes osmotic pressure as the mechanism that initiates egg activation in Drosophila and is consistent with previous work from evolutionarily distant insects, including dragonflies and mosquitos, and shows remarkable similarities to the mechanism of egg activation in some plants.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jia-Ming Zhang ◽  
Wei-Bo Hou ◽  
Jia-Wei Du ◽  
Ming Zong ◽  
Kai-Lun Zheng ◽  
...  

AbstractIn mammalian early embryos, the transition from maternal to embryonic control of gene expression requires timely degradation of a subset of maternal mRNAs (MRD). Recently, zygotic genome activation (ZGA)-dependent MRD has been characterized in mouse 2-cell embryo. However, in early embryos, the dynamics of MRD is still poorly understood, and the maternal factor-mediated MRD before and along with ZGA has not been investigated. Argonaute 2 (Ago2) is highly expressed in mouse oocyte and early embryos. In this study, we showed that Ago2-dependent degradation involving RNA interference (RNAi) and RNA activation (RNAa) pathways contributes to the decay of over half of the maternal mRNAs in mouse early embryos. We demonstrated that AGO2 guided by endogenous small interfering RNAs (endosiRNAs), generated from double-stranded RNAs (dsRNAs) formed by maternal mRNAs with their complementary long noncoding RNAs (CMR-lncRNAs), could target maternal mRNAs and cooperate with P-bodies to promote MRD. In addition, we also showed that AGO2 may interact with small activating RNAs (saRNAs) to activate Yap1 and Tead4, triggering ZGA-dependent MRD. Thus, Ago2-dependent degradation is required for timely elimination of subgroups of maternal mRNAs and facilitates the transition between developmental states.


2020 ◽  
Author(s):  
Christopher R. Neil ◽  
Samantha P. Jeschonek ◽  
Sarah E. Cabral ◽  
Liam C. O’Connell ◽  
Erin A. Powrie ◽  
...  

AbstractRNP granules are membrane-less compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are transported as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here, we demonstrate that vegetal transport RNPs represent a new class of cytoplasmic RNP granule, termed Localization-bodies (L-bodies). We show that L-bodies are multiphase RNP granules, containing a dynamic protein-containing phase surrounding a non-dynamic RNA-containing substructure. Our results support a role for RNA as a critical scaffold component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.


Sign in / Sign up

Export Citation Format

Share Document