scholarly journals Comparative study of a winter wheat variety and hybrid sown after different pre-crops on chernozem soil

2019 ◽  
pp. 63-69
Author(s):  
Ágnes Fekete ◽  
Péter Pepó

Wheat production is a determining branch within Hungarian crop production (produced on nearly one million hectares). Weather anomalies caused by climatic change confirmed the importance of the biological background (variety, hybrid) in wheat production. The adapting ability and reaction of different wheat genotypes towards nutrient supply were studied in a long-term field experiment on chernozem soil type in the case of different pre-crops (sunflower and maize). According to the experimental results of the vegetation of 2017/2018, the yield of the variety Ingenio sown after the sunflower as previous crop ranged between 4168 and 8734 kg ha-1, while in the case of maize as previous crop, this value ranged between 2084 and 7782kg ha-1, depending on the applied nutrient supply level. The studied genotypes produced rather significant yield surplus as a response to the application of mineral fertilization (4.6–5.1 t ha-1 after sunflower and 5.7–6.3 t ha-1 after maize). Optimal mineral fertilizer dosage was determined by both the genotype and the pre-crop. N-optimum values of wheat genotypes was determined using regression analysis. In the case of the variety Ingenio sown after sunflower, the optimum range was N144-150+PK, while after maize, it was N123-150+PK, respectively. For the hybrid Hyland, these optimum ranges were N114-120+PK, just as N150-153+PK, resp. The application of optimal mineral fertilizer dosages improved water utilization of the studied wheat genotypes to a significant extent. WUE values of the control, unfertilized treatments ranged between 4.1–8.3 kg mm-1, while in optimal fertilizer treatment, it ranged between 15.5 and 17.4 kg mm-1.

2019 ◽  
Vol 8 (1-2) ◽  
pp. 16-22
Author(s):  
Ágnes Fekete ◽  
Péter Pepó

Wheat production is a determining branch within Hungarian crop production (near 1 million hectares). Weather anomalies caused by climatic change confirmed the importance of biological basis (variety, hybrid) in wheat production. The adapting ability and reaction of different wheat genotypes towards nutrient supply were studied in a long-term field experiment on chernozem soil type in case of different pre-crops (sweet corn, sunflower and maize). According to the experimental results of the vegetation 2017/2018 the most highest yield amount of the variety Ingenio sown after the pre-crop sunflower ranged between 2710 kg ha-1 and 8710 kg ha-1, while the hybrid (Hyland) in case of the pre-crop sweet maize between 6556 kg ha-1 and 9270 kg ha-1 depending on the applied nutrient supply level. The studied genotypes showed the highest quality (protein, gluten) in case of the pre-crop sweet maize. In the cropyear of 2017/2018, the protein content of Ingenio ranged between 12.2-14.8%, while the Hyland in case of the pre-crops sweet corn between 9.9-13.9%. The gluten content of the Ingenio genotype changed between 24.9-32.5%, in the case of Hyland ranged between 16.9-27.3% in the studied cropyear.


2015 ◽  
Vol 4 (4) ◽  
pp. 66 ◽  
Author(s):  
Maria I. Kokkora ◽  
Chryssoula Papaioannou ◽  
Panagiotis Vyrlas ◽  
Konstantinos Petrotos ◽  
Paschalis Gkoutsidis ◽  
...  

<p>The present study investigates the potential of olive mill wastewater, treated by microfiltration and XAD4 macroporous resin, to be used as liquid fertilizer in maize production through a 2-year field experiment. The treated olive mill wastewater (T-OMWW) was applied at two rates of 25 t and 50 t per ha per year, supplemented with mineral fertilization. There was also a treatment involving the application of only T-OMWW at the rate of 50 t per ha per year, and an only mineral fertilizer treatment. Mineral fertilizers and T-OMWW were applied progressively through a drip irrigation system.</p> Maize grain and soil analysis showed that T-OMWW was capable to meet crop requirements in N, P and K, and increase soil N, P and K availability. There was a tendency for increasing soil Na and electrical conductivity (EC) using the higher rate of T-OMWW. Therefore, for sustainable agriculture, it may be safer to apply the T-OMWW at the lower rate of 25 t per ha<sup> </sup>per year, or use the higher rate of 50 t per ha<sup> </sup>every other year.


2017 ◽  
Vol 63 (No. 3) ◽  
pp. 105-110 ◽  
Author(s):  
Vitale Luca ◽  
Polimeno Franca ◽  
Ottaiano Lucia ◽  
Maglione Giuseppe ◽  
Tedeschi Anna ◽  
...  

Improvements in crop management for a more sustainable agriculture are fundamental to reduce environmental impacts of cropland and to mitigate effects on global climate change. In this study three fertilization types – ammonium nitrate (control); mineral fertilizer added with a nitrification inhibitor (3,4-dimethylpyrazole phosphate (DMPP)), and an organo-mineral fertilizer (OM) – were tested on a tomato crop in order to evaluate effects both on crop production and soil N<sub>2</sub>O emissions. Plants grown under OM fertilization had a greater relative growth rate compared to mineral fertilization, due to a higher net assimilation rate, which was related to a greater light interception rather than to a higher photosynthetic efficiency. OM fertilization determined the highest fruit production and lower soil N<sub>2</sub>O fluxes compared to NH<sub>4</sub>NO<sub>3</sub>, although the lowest soil N<sub>2</sub>O fluxes were found in response to mineral fertilizer added with a nitrification inhibitor. It can be concluded that organo-mineral fertilizer is a better nutrient source compared to mineral fertilizers able to improve crop yield and to mitigate soil N<sub>2</sub>O emission.  


2003 ◽  
pp. 126-130
Author(s):  
Péter Jakab

n my research, I measured the effect of NPK fertilisation on the macro- meso- and microelements content of maize hybrids in 2001. The experiment was set in the demonstration garden of the Department of Crop Production and Applied Ecology in the Agricultural Centre, at the University in Debrecen. The soil of the experiment is calcerous chernozem soil. Five fertilisation steps were applied. Besides the control the smallest rate was 40 kg N; 25 kg P2O5; 30 kg K2O of active ingredients. The largest rate was five times more than the smallest one: 200 kg N; 125 kg P2O5; 150 kg K2O, which is equal to 475 kg mixed active ingredients. The NPK treatment significantly influenced the macrolement content in several cases. The N content was the lowest in the control treatment. Compared to this the fertiliser treatments significantly increased the N content of hybrids. However the highest amounts of potassium and phosphorus could be measured in the control and the lowest amounts could be measured at the N 200+PK kg/ha treatment.The Ca content of hybrids was the highest in the N 120+PK kg/ha treatment, while their Mg and Zn content was the highest in the control treatment. The lowest amounts were weighed in the N 200+PK kg/ha treatments, that in several cases resulted in statistically proved decreasement compared to the control or the lower fertilizer doses. Considering the two mesoelements and Zn the most favourable results were obtained in the case of the Norma SC and DK 366 SC hybrids.Summing up what has been said moderate amounts of fertiliser doses (N 40-120+PK kg/ha) had a favourable influence on the micro- and macroelement content of hybrids.


Author(s):  
Julio Cesar Delvaux ◽  
Reginaldo de Carmargo ◽  
Regina Maria Quintão Lana ◽  
Miguel Henrique Rosa Franco ◽  
Mayara Cristiana Stanger ◽  
...  

Pelletized organomineral fertilizers (OMFs) are a promising, sustainable alternative for eucalyptus fertilization, the most widely cultivated hardwood tree globally. However, little is known about the effects of OMFs on initial plant development and soil quality. We evaluated the effects of different doses of a pelletized OMF derived from sugarcane filter cake (0%, 50%, 100%, 150%, and 200% relative to the recommended phosphorus dose for cultivation) and a mineral treatment (mineral fertilizer at the recommended dose for eucalyptus), as well as the effects of time (30, 60, 90, and 120 days after transplanting), on the morphophysiological responses of eucalyptus plants (diameter at neck height, plant height, and chlorophyll a and b content) and soil pH, microbial biomass (MBC), and microbial activity (soil basal respiration [SBR]). Increases in fertilizer dose led to increased chlorophyll a values, but values decreased under the highest doses (150% and 200%). OMF addition led to an initial increase in soil pH, followed by a reduction. The highest values of plant height, stem diameter, and fresh and dry masses of leaves, stems, and roots were observed when the OMF dose of 50% was administered. MBC values were inversely proportional to the OMF dose, and the SBR and metabolic quotient (qCO2) values observed under the 50% and 100% treatments were equal to or better than those observed under the mineral fertilizer treatment. Pelletized OMFs derived from filter cake could potentially replace mineral fertilization in the early development of Eucalyptus urophylla × Eucalyptus grandis without damaging soil quality


2009 ◽  
Vol 24 (4) ◽  
pp. 245-250 ◽  
Author(s):  
O.O. AdeOluwa ◽  
G.O. Adeoye ◽  
S.A. Yusuff

AbstractChemical fertilizers for boosting crop production are becoming more expensive and scarce. Green amaranth (Amaranthus caudatus L.) is a fast growing and highly nutritious crop, but its common use in the diet of Nigerians is constrained by its high demand for nitrogen fertilizer. Thus, there is a need to find local fertilizer materials that are readily available to peasant farmers. A preliminary field study was conducted to evaluate urine and neem (Azadirachta indica L. juss) as alternative sources for mineral fertilizers in fortifying organic fertilizer (OF) made from cow dung and market waste compost, and OF fortified with urea and bone meal [organo-mineral fertilizer (OMF)], for yield and growth of green amaranth. Fifteen treatments, based on the percentages of N supplied, were NPK15-15-15, OMF, OF, urine, neem and ten treatments of 50, 60, 70, 80 or 90% OF supplemented with a total of 50, 40, 30, 20 and 10% urine or neem, respectively, to provide a total application rate of 100 kg N ha−1, with no fertilizer treatment as a control. Planting was done in two successions (main with fertilizer treatments and residual without further application). The fertilizer sources and levels had significant effects on plant height, number of leaves, stem girth, fresh weight and dry weight. The residual effects were also significant for plant height, number of leaves, total fresh and dry weights. Forty percent N urine amendment of the OF produced the highest total fresh amaranth biomass (269.3 g plot−1 main effect and 110.8 g plot−1 residual effect), which was significantly better than the values of (140 and 35.3 g plot−1, respectively) obtained with respect to OMF during main planting and NPK during residual planting. Results of our study reveal that 40% N urine fortification of OF was a viable substitute for synthetic fertilizers in production of amaranth, and that urine and neem cake can be alternatives to mineral fertilizer for crop production.


2011 ◽  
Vol 35 (4) ◽  
pp. 1461-1470 ◽  
Author(s):  
José Rafael Pires Bueno ◽  
Ronaldo Severiano Berton ◽  
Adriana Parada Dias da Silveira ◽  
Marcio Koiti Chiba ◽  
Cristiano Alberto de Andrade ◽  
...  

Studies on sewage sludge (SS) have confirmed the possibilities of using this waste as fertilizer and/or soil conditioner in crop production areas. Despite restrictions with regard to the levels of potentially toxic elements (PTE) and pathogens, it is believed that properly treated SS with low PTE levels, applied to soil at adequate rates, may improve the soil chemical and microbiological properties. This study consisted of a long-term field experiment conducted on a Typic Haplorthox (eutroferric Red Latosol) treated with SS for seven successive years for maize production, to evaluate changes in the soil chemical and microbiological properties. The treatments consisted of two SS rates (single and double dose of the crop N requirement) and a mineral fertilizer treatment. Soil was sampled in the 0-0.20 m layer and analyzed for chemical properties (organic C, pH, P, K, Ca, Mg, CEC, B, Cu, Fe, Mn, Zn, Cd, Ni, and Pb) and microbiological properties (basal respiration, microbial biomass activity, microbial biomass C, metabolic quotient, microbial quotient, and protease and dehydrogenase enzyme activities). Successive SS applications to soil increased the macro- and micronutrient availability, but the highest SS dose reduced the soil pH significantly, indicating a need for periodic corrections. The SS treatments also affected soil microbial activity and biomass negatively. There were no significant differences among treatments for maize grain yield. After seven annual applications of the recommended sludge rate, the heavy metal levels in the soil had not reached toxic levels.


2012 ◽  
pp. 91-95
Author(s):  
Lajos Gábor Karancsi ◽  
Lajos Fülöp Dóka ◽  
Péter Pepó

The effect of increasing fertilizer dosages on the yield of eight different maize hybrids (SY Ondina, NK Kansas, NK Lucius, NK Octet, NK Thermo, SY Flovita, SY Brillio, NX 47279) has been investigated in the crop-year of 2011. According to our results it can be stated that contrarily to the control treatment the application of different nutrient-levels has resulted a significant yield increment (2 000–5 800 kg ha-1).Based upon the results of this experiment we have drawn the conclusion that the nutrient level of 120 kg N+PK was the optimal for the investigated hybrids. The highest yield (14 475 kg ha-1–15 963 kg ha-1) of the hybrids with different genotypes has been produced in case of this fertilizer treatment. With the comparison of the control and the optimum-fertilizer treatments the yield-increasing effect of mineral fertilization and the different reaction of hybrids towards increasing fertilizer dosages have been proven. In case of the control treatments the best-yielding hybrids were NK Thermo (11 917 kg ha-1) and NX 47279 (11 617 kg ha-1). Contrarily on the optimal nutrient supply level the hybrids SY Brillio (15 876 kg ha-1) and NX 47279 (15 963 kg ha-1) have produced the highest yields. Summarizing, we can state that the hybrid NX 47279 has resulted stable and high yields in the fertilized treatments. Analysing the yield-increasing effect of 1 kg fertilizer active substance it was proven, that the hybrids SY Flovita (45.43 kg ha-1), SY Brillio (44.47 kg ha-1) and NX 47279 (42.33 kg ha-1) had a good reaction towards even lower nutrient supply levels as well. In case of the control treatment the average water utilization coefficient of the hybrids was significantly lower (35.2 kg mm-1), than in case of the optimal nutrient supply level (N120+PK) treatments (48.9 kg mm-1).Therefore the hybrid specific difference between the water utilization of genotypes could be revealed.


2020 ◽  
pp. 71-75
Author(s):  
Ágnes Fekete ◽  
Péter Pepó

Wheat production is significant branch of Hungarian crop production (with about 1 million hectares of sowing area). Weather anomalies resulted by climate change have increased the importance of biological basis in wheat production. Yield quality and quantity parameters of three wheat genotypes sown on chernozem soil type after maize pre-crop were studied in a long-term field experiment. Yield amount of the studied genotypes varied between 2894 and 8074 kg ha-1 in 2017 and between 5795 and 9547 kg ha-1 in 2018 depending on the applied treatments. Based on our results it can be stated that in both studied crop years the highest yield increment was realized by the application of the nutrient supply level of N30+PK. As the result of the application of the optimum mineral fertilizer level – in contrast to the control – resulted in significant yield increment in both crop years. The results of the long-term field experiment prove that water utilization of the studied wheat varieties / hybrids was improved by the application of the optimal nutrient supply. Furthermore, the water utilization of the latest genotypes was more favorable by both the control and the optimum nutrient supply level treatments. Analyzing the quality parameters of winter wheat using the NIR method it has been stated that the quality results of the well-known genotype (GK Öthalom) were better than those of the new genotypes. A negative correlation between winter wheat quality and quantity parameters has also been confirmed. As the result of the mineral fertilizer application protein and gluten content of winter wheat increased to a significant extent.


2019 ◽  
Author(s):  
João Macedo Moreira ◽  
Aldrin Martin Pérez-Marin ◽  
Jucilene Silva Araújo ◽  
George Rodrigues Lambais ◽  
Aldo Sales

The study aimed to evaluate the efficiency of nutrient use in three cactus forage (CF) cultivars (Opuntia stricta and Nopalea cochenillifera), 365 days after planting under different types of fertilizer in two research sites (Condado and Riachão) of the semi-arid region of Paraiba state, Brazil. The experimental design was a randomized block design with treatments in a factorial scheme (3×4), three cultivars of CF (Orelha de elefante Mexicana; Miúda; Bahiana), and four fertilizer treatment (Control; Manure; Manure with Nitrogen; Mineral fertilization) with four replications. The CF cultivars did not differ significantly in nutrient use. That means of physiological efficiency by CF cultivars were 1.62, and 2.36 kg of biomass per kg of nutrient applied in Condado and Riachão, respectively. The efficiency of nutrient recovery was 16% for the Condado, according the following order: K&gt; P&gt; Ca&gt; N&gt; C = Mg and 12% for Riachão: K&gt; P&gt; N&gt; C = Ca = Mg. In the two research sites, the treatment with mineral fertilization significantly increased the efficiency use of N, P and K in comparison to the other treatments. The average for efficiency of nutrient utilization was 25% and 19% for Condado and Riachão, respectively, in the following order for Condado: K&gt; P&gt; N&gt; Ca = Mg&gt; C, and Riachão: K&gt; P&gt; N&gt; C&gt; Mg = Ca. In a CF production system aiming to obtain a yearly harvest cycle, it is necessary to replenish of K and P to maintain the nutritional balance between the soil and CF plant.


Sign in / Sign up

Export Citation Format

Share Document