scholarly journals Quantization and Assessment of the Gravitational Waves

General Relativity describes the movement of bodies in strong gravitational fields with the geometrical structure of the dynamical space-time continuum. Accelerating objects produce changes in the curvature which propagate outwards at the speed of light in a wave-like manner which transports energy as gravitational radiation and this phenomenon are known as gravitational waves.

Author(s):  
Tony Yuan

The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton’s gravitational equation through the influence of gravitational waves?


2019 ◽  
pp. 265-284
Author(s):  
Steven J. Osterlind

This chapter provides the context for the early twentieth-century events contributing to quantification. It was the golden age of scientific exploration, with explorers like David Livingstone, Sir Richard Burton, and Sir Ernest Shackleton, and intellectual pursuits, such as Hilbert’s set of unsolved problems in mathematics. However, most of the chapter is devoted to discussing the last major influencer of quantification: Albert Einstein. His life and accomplishments, including his theory of relativity, make up the final milestone on our road to quantification. The chapter describes his time in Bern, especially in 1905, when he published several famous papers, most particularly his law of special relativity, and later, in 1915, when he expanded it to his theory of general relativity. The chapter also provides a layperson’s description of the space–time continuum. Women of major scientific accomplishments are mentioned, including Madame Currie and the mathematician Maryam Mirzakhani.


2020 ◽  
Vol 29 (10) ◽  
pp. 2050072
Author(s):  
Tomohiro Inagaki ◽  
Masahiko Taniguchi

We study the gravitational waves (GWs) in modified Gauss–Bonnet gravity. Applying the metric perturbation around a cosmological background, we obtain explicit expressions for the wave equations. It is shown that the speed of the traceless mode is equal to the speed of light. An additional massive scalar mode appears in the propagation of the GWs. To find phenomena beyond the general relativity, the scalar mode mass is calculated as a function of the background curvature in some typical models.


1974 ◽  
Vol 64 ◽  
pp. 60-60
Author(s):  
Peter Jocelyn Westervelt

I have shown (Westervelt, 1966) that ultrarelativistic bodies do not radiate gravitational waves in the forward direction. This work has been extended so as to apply to circular orbits. Even if low efficiency of generation precludes direct observation of gravitational waves, indirect evidence for their existence is available in a recent analysis (Westervelt, 1969) of Shapiro's fourth test of general relativity.


The field of gravitational radiation emitted from two moving particles is investigated by means of general relativity. A method of approximation is used, and in the linear approximation retarded potentials corresponding to spherical gravitational waves are introduced. As is already known, the theory in this approximation predicts that energy is lost by the system. The field equations in the second, non-linear, approximation are then considered, and it is shown that the system loses an amount of gravitational mass precisely equal to the energy carried away by the spherical waves of the linear approximation. The result is established for a large class of particle motions, but it has not been possible to determine whether energy is lost in free gravitational motion under no external forces. The main conclusion of this work is that, contrary to opinions frequently expressed, gravitational radiation has a real physical existence, and in particular, carries energy away from the sources.


2021 ◽  
Author(s):  
Tony Yuan

Abstract For any object with finite velocity, the relative velocity between them will affect the effect between them. This effect can be called the chasing effect (general Doppler effect). LIGO discovered gravitational waves and measured the speed of gravitational waves equal to the speed of light c. Gravitational waves are generated due to the disturbance of the gravitational field, and the gravitational waves will affect the gravitational force on the object. We know that light waves have the Doppler effect, and gravitational waves also have this characteristic. The article studies the following questions around gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of the gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field on the object)? What is the speed of the gravitational field? Will gravitational waves caused by the revolution of the sun affect planetary precession?


Author(s):  
Tony Yuan

The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton’s gravitational equation through the influence of gravitational waves?


2021 ◽  
Author(s):  
Tony Yuan

Abstract The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? Do gravitational waves caused by the revolution of the sun affect planetary precession? Can we modify Newton’s gravitational equation through the influence of gravitational waves?


2018 ◽  
Vol 33 (14n15) ◽  
pp. 1830013 ◽  
Author(s):  
Alain Dirkes

In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating [Formula: see text]-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.


Author(s):  
Charles D. Bailyn

This chapter looks at the detection of black holes through gravitational waves. While further improvements can be expected in the ability to detect and measure electromagnetic radiation, it is possible that the next great advances in observational astrophysics will come from the detection of other kinds of information altogether. Currently, there is a great excitement about the possibility of directly detecting an entirely new “celestial messenger,” namely, gravitational radiation. The existence of gravitational waves is a prediction of general relativity, and current technology is very close to being able to detect them directly. The strongest sources of gravitational radiation are expected to be merging black holes. Since such mergers are expected to occur, both between stellar-mass and supermassive black holes, the detection of gravitational radiation would provide a new way not only to explore gravitational physics but also to look for and to study celestial black holes.


Sign in / Sign up

Export Citation Format

Share Document