scholarly journals Bioprinted Vascularized Mature Adipose Tissue with Collagen Microfibers for Soft Tissue Regeneration

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fiona Louis ◽  
Marie Piantino ◽  
Hao Liu ◽  
Dong-Hee Kang ◽  
Yoshihiro Sowa ◽  
...  

The development of soft tissue regeneration has recently gained importance due to safety concerns about artificial breast implants. Current autologous fat graft implantations can result in up to 90% of volume loss in long-term outcomes due to their limited revascularization. Adipose tissue has a highly vascularized structure which enables its proper homeostasis as well as its endocrine function. Mature adipocytes surrounded by a dense vascular network are the specific features required for efficient regeneration of the adipose tissue to perform host anastomosis after its implantation. Recently, bioprinting has been introduced as a promising solution to recreate in vitro this architecture in large-scale tissues. However, the in vitro induction of both the angiogenesis and adipogenesis differentiations from stem cells yields limited maturation states for these two pathways. To overcome these issues, we report a novel method for obtaining a fully vascularized adipose tissue reconstruction using supporting bath bioprinting. For the first time, directly isolated mature adipocytes encapsulated in a bioink containing physiological collagen microfibers (CMF) were bioprinted in a gellan gum supporting bath. These multilayered bioprinted tissues retained high viability even after 7 days of culture. Moreover, the functionality was also confirmed by the maintenance of fatty acid uptake from mature adipocytes. Therefore, this method of constructing fully functional adipose tissue regeneration holds promise for future clinical applications.

2013 ◽  
Vol 19 (6) ◽  
pp. 458-472 ◽  
Author(s):  
Mohammad A. Alamein ◽  
Sebastien Stephens ◽  
Qin Liu ◽  
Stuart Skabo ◽  
Patrick H. Warnke

Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 150 ◽  
Author(s):  
Costas A. Charitidis ◽  
Dimitrios A. Dragatogiannis ◽  
Eleni Milioni ◽  
Maria Kaliva ◽  
Maria Vamvakaki ◽  
...  

Tissue regeneration necessitates the development of appropriate scaffolds that facilitate cell growth and tissue development by providing a suitable substrate for cell attachment, proliferation, and differentiation. The optimized scaffolds should be biocompatible, biodegradable, and exhibit proper mechanical behavior. In the present study, the nanomechanical behavior of a chitosan-graft-poly(ε-caprolactone) copolymer, in hydrated and dry state, was investigated and compared to those of the individual homopolymers, chitosan (CS) and poly(ε-caprolactone) (PCL). Hardness and elastic modulus values were calculated, and the time-dependent behavior of the samples was studied. Submersion of PCL and the graft copolymer in α-MEM suggested the deterioration of the measured mechanical properties as a result of the samples’ degradation. However, even after three days of degradation, the graft copolymer presented sufficient mechanical strength and elastic properties, which resemble those reported for soft tissues. The in vitro biological evaluation of the material clearly demonstrated that the CS-g-PCL copolymer supports the growth of Wharton’s jelly mesenchymal stem cells and tissue formation with a simultaneous material degradation. Both the mechanical and biological data render the CS-g-PCL copolymer appropriate as a scaffold in a cell-laden construct for soft tissue engineering.


2010 ◽  
Vol 16 (4) ◽  
pp. 413-426 ◽  
Author(s):  
Jennifer H. Choi ◽  
Jeffrey M. Gimble ◽  
Kyongbum Lee ◽  
Kacey G. Marra ◽  
J. Peter Rubin ◽  
...  

Biomaterials ◽  
2013 ◽  
Vol 34 (13) ◽  
pp. 3290-3302 ◽  
Author(s):  
Claire Yu ◽  
Juares Bianco ◽  
Cody Brown ◽  
Lydia Fuetterer ◽  
John F. Watkins ◽  
...  

2021 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in the craniofacial region is a major challenge, and soft tissue regeneration is crucial in determining the therapeutic outcomes of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) that are homologous to cells in craniofacial tissue and represent a promising source for craniofacial tissue regeneration. Exosomes, which contain compound bioactive compounds, are the key factors in stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularization were detected by measuring the wound area and performing histological and immunofluorescence analysis on the palatal gingival CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo-mediated EC angiogenesis in vitro were tested by immunofluorescence staining, Western blot and pull-down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect vascularization and wound healing through cell division cycle 42 (Cdc42). Results: We found that SCAP-Exo promoted tissue regeneration of palatal gingival CSD by enhancing vascularization in the early phase in vivo and that SCAP-Exo improved the angiogenic capacity of ECs in vitro . Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via Cdc42 signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs and that the Cdc42 protein could be reused directly by recipient ECs, which resulted in the activation of Cdc42-dependent filopodium formation and elevation in cell migration of ECs. Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used in a cell-free approach to optimize tissue regeneration in the clinic.


2020 ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background: Reconstruction of complex critical-size defects (CSD) in craniofacial region is a major challenge, and the soft tissue regeneration is crucial in determining the therapeutic outcome of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) which are homologous to craniofacial tissue, and represent a promising source for craniofacial tissue regeneration. Exosomes, which contained compound bioactive contents, are the key factors of stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue.Methods: SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularisation were detected by measuring wound area, histological and immunofluorescence analysis in the palate gingiva CSD of mice. Real-time live cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo mediated ECs angiogenesis in vitro was tested by immunofluorescence staining, Western blot and Pull-Down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect the vascularisation and wound healing through Cdc42.Results: We showed that SCAP-Exo promoted tissue regeneration of palatal gingiva CSD by enhancing vascularisation in the early phase in vivo, and also indicated SCAP-Exo improved the angiogenic capacity of endothelial cells (ECs) in vitro. Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via cell division cycle 42 (Cdc42) signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs, and the Cdc42 protein could be reused directly by the recipient ECs, which resulted in the activation of Cdc42 dependent filopodia formation and elevation of cell migration of ECs.Conclusion: This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used as a cell-free approach to optimize tissue regeneration in the clinic.


2012 ◽  
Vol 24 (6) ◽  
pp. 612-617 ◽  
Author(s):  
Pier Francesco Nocini ◽  
Guglielmo Zanotti ◽  
Roberto Castellani ◽  
Silvia Grasso ◽  
Maria Giulia Cristofaro ◽  
...  

2017 ◽  
Vol 18 (5) ◽  
pp. 1038 ◽  
Author(s):  
Francesco De Francesco ◽  
Antonio Guastafierro ◽  
Gianfranco Nicoletti ◽  
Sergio Razzano ◽  
Michele Riccio ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Liu ◽  
Xueying Zhuang ◽  
Si Yu ◽  
Ning Yang ◽  
Jianhong Zeng ◽  
...  

Abstract Background Reconstruction of complex critical-size defects (CSD) in the craniofacial region is a major challenge, and soft tissue regeneration is crucial in determining the therapeutic outcomes of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) that are homologous to cells in craniofacial tissue and represent a promising source for craniofacial tissue regeneration. Exosomes, which contain compound bioactive compounds, are the key factors in stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularization were detected by measuring the wound area and performing histological and immunofluorescence analysis on the palatal gingival CSD of mice. Real-time live-cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo-mediated EC angiogenesis in vitro were tested by immunofluorescence staining, Western blot, and pull-down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect vascularization and wound healing through cell division cycle 42 (Cdc42). Results We found that SCAP-Exo promoted tissue regeneration of palatal gingival CSD by enhancing vascularization in the early phase in vivo and that SCAP-Exo improved the angiogenic capacity of ECs in vitro. Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via Cdc42 signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs and that the Cdc42 protein could be reused directly by recipient ECs, which resulted in the activation of Cdc42-dependent filopodium formation and elevation in cell migration of ECs. Conclusion This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used in a cell-free approach to optimize tissue regeneration in the clinic.


Sign in / Sign up

Export Citation Format

Share Document