Architectural Approach to eHealth for Enabling Paradigm Changes in Health

2010 ◽  
Vol 49 (02) ◽  
pp. 123-134 ◽  
Author(s):  
B. Blobel

Summary Objectives: For improving safety and quality of care as well as efficiency of health delivery under the well-known burdens, health services become specialized, distributed, and therefore collaborative, thereby changing the health service paradigm from organization-centered over process-controlled to personal health (pHealth). Methods: Personalized eHealth services provided independent of time and location have to be based on advanced technical paradigms of mobile, pervasive and autonomous computing, enabling ubiquitous health services. Personalized eHealth systems require a multidiscipli-nary approach including medicine, informatics, biomedical engineering, bioinformatics and the omics disciplines but also legal and regulatory affairs, administration, security, privacy and ethics, etc. Interoperability between different components of the intended system must be provided through an architecture-centric, model-driven, formalized process. Results: In order to analyze, design, specify, implement and maintain such an interactive environment impacted by so many different domains, a formal and unified methodology for system analysis and design has been developed and deployed, based on an overall architectural framework. The paper introduces the underlying paradigms, requirements, architectural reference models, modeling and formalization principles as well as development processes for comprehensive service-oriented personalized eHealth inter-operability chains, thereby exploiting all inter-operability levels up to service interoperability. A special focus is put on ontologies and knowledge representation in the context of eHealth and pHealth solutions. Furthermore, EHR solutions, security requirements, existing and emerging standards, and educational challenges for realizing personalized pHealth are briefly discussed. Conclusion: For personal health, bridging between disciplines including ontology coordination is the crucial demand. All aspects of the design and development process have to be considered from an architectural viewpoint.

Author(s):  
Ronda R. Henning

Information security engineering is the specialized branch of systems engineering that addresses the derivation and fulfillment of a system’s security requirements. For years, security engineering practitioners have claimed that security is easier to build into a system when it is integrated with the system analysis and design. This paper presents some basic tenets of security analysis that can be applied by any systems engineer to ensure early integration of security constraints into the system definition and development process. It sheds light on security requirements interpretation to facilitate the fulfillment of security requirements throughout the system lifecycle.


2014 ◽  
Vol 50 (3) ◽  
pp. 1841-1863 ◽  
Author(s):  
Tarek Menni ◽  
Jerome Galy ◽  
Eric Chaumette ◽  
Pascal Larzabal

Author(s):  
Manfred Ehresmann ◽  
Georg Herdrich ◽  
Stefanos Fasoulas

AbstractIn this paper, a generic full-system estimation software tool is introduced and applied to a data set of actual flight missions to derive a heuristic for system composition for mass and power ratios of considered sub-systems. The capability of evolutionary algorithms to analyse and effectively design spacecraft (sub-)systems is shown. After deriving top-level estimates for each spacecraft sub-system based on heuristic heritage data, a detailed component-based system analysis follows. Various degrees of freedom exist for a hardware-based sub-system design; these are to be resolved via an evolutionary algorithm to determine an optimal system configuration. A propulsion system implementation for a small satellite test case will serve as a reference example of the implemented algorithm application. The propulsion system includes thruster, power processing unit, tank, propellant and general power supply system masses and power consumptions. Relevant performance parameters such as desired thrust, effective exhaust velocity, utilised propellant, and the propulsion type are considered as degrees of freedom. An evolutionary algorithm is applied to the propulsion system scaling model to demonstrate that such evolutionary algorithms are capable of bypassing complex multidimensional design optimisation problems. An evolutionary algorithm is an algorithm that uses a heuristic to change input parameters and a defined selection criterion (e.g., mass fraction of the system) on an optimisation function to refine solutions successively. With sufficient generations and, thereby, iterations of design points, local optima are determined. Using mitigation methods and a sufficient number of seed points, a global optimal system configurations can be found.


2010 ◽  
Vol 455 ◽  
pp. 237-241
Author(s):  
X.Y. Yang ◽  
H.B. Zheng ◽  
Z.W. Zhang

With the development of manufacturing automation and intelligent increasing speed, the construction in plant management information has been important tasks to promote business innovation ability, improve competitiveness and manufacturing execution. In this paper, UML (Unified Modeling Language) and object-oriented modeling technology were applied to model the static structure and dynamic behavior of the plant management information from requirement analysis to system implementation, including functional requirement model, static structural model, asset management time sequence chart, system physical model and so on. The visualized system analysis method and technology better planned the system design and improved the efficiency of the system development. It will play a guiding role in the object-oriented software development.


1980 ◽  
Vol 102 (3) ◽  
pp. 154-159 ◽  
Author(s):  
A. Lavi

A complex power system may be modeled by a system of inequalities representing the constraints imposed by the physical laws: heat transfer, energy balance, cycle efficiency and so forth. The nature of the resulting mathematical model is such that the terms contain complex expressions involving the design and operating variables of the process. With the addition of an objective function involving the cost of major system components, a multivariable nonlinear programming problem can be formulated. Seldom does the model lend itself to analytical treatment. This paper is concerned with a specific formulation and solution of nonlinear programming problems which arise in the design of ocean thermal energy conversion (OTEC) power plants. The technique used is geometric programming, GP. It is shown that GP serves as an excellent tool for system analysis because it provides sensitivity information essential to the designer.


Author(s):  
Tatiana Sidorenko ◽  
Vladimir Yampolsky

Integration of the Russian system of engineering education into the global educational domain compelled Russian universities to enhance the importance of humanities in engineering programs with a special focus on foreign languages. However, it must be admitted that the system of language training in Russia at a university level comes up against serious problems of historical, economic or political backgrounds, for which reason there are processes in the system that hamper a solution of the tasks set before the university and the society. The solution requires strong and decisive initiatives capable to improve the situation with the language proficiency among the graduators. Therefore, there is a rapid need in essentially new approaches to teaching foreign languages attain the desired outcomes for engineers, which reflect not only subject-oriented knowledge but also personal skills and the ability to effectively communicate with an opponent or a partner. The need to identify barriers towards high-quality language courses at a university level motivated the authors to carry out a special research based on the methods that are typical to system analysis.


2021 ◽  
Vol 15 (4) ◽  
pp. 10-23
Author(s):  
Eka Chandra Ramdhani ◽  
Juniarti Eka Safitri ◽  
Selamat Abdurrahman Fahmi ◽  
Asep Asep

The inventory system is a system that has a very important role in a company. Inventory systems have been widely used or developed in a place with various technologies and systems. Problems at PT. Sanghiang Perkasa is due to the fact that the data has not been stored in a good file and the management and processing of inventory data is still processed in a conventional way, which has a very significant effect on the quality of the data and information produced. The main objective of this research is to produce an inventory system that is powerful and in accordance with the needs of the users associated with the inventory system. The system development method in this inventory system uses the waterfall method which consists of six stages. The stages are System Analysis and Design, software requirements analysis, system design, coding, system testing and maintenance. This system was built using the PHP programming language, DataBase MySQL. It is hoped that with the implementation of this inventory system at PT. Sanghiang Perkasa can make it easier to store and process data and information such as stock-taking data, information on incoming and outgoing goods transactions, purchase and sales return data, managing customer and supplier data to making product stock reports and assembly reports. Keywords: Information System; Inventory, Web


Sign in / Sign up

Export Citation Format

Share Document