scholarly journals Efficient Structures of the Bottom-up Energy System Model for Assessing Greenhouse Gas Reduction Policies in the Road Transport Sector

2018 ◽  
Vol 25 (3) ◽  
pp. 25-38
Author(s):  
안영환 ◽  
Choi Dong Gu ◽  
Kim, Hu-Gon (
Author(s):  
Ahmed Younis ◽  
René Benders ◽  
Ricardo Delgado ◽  
Tjerk Lap ◽  
Miguel Gonzalez‐Salazar ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3634
Author(s):  
Daniele Lerede ◽  
Chiara Bustreo ◽  
Francesco Gracceva ◽  
Yolanda Lechón ◽  
Laura Savoldi

The European Roadmap towards the production of electricity from nuclear fusion foresees the potential availability of nuclear fusion power plants (NFPPs) in the second half of this century. The possible penetration of that technology, typically addressed by using the global energy system EUROFusion TIMES Model (ETM), will depend, among other aspects, on its costs compared to those of the other available technologies for electricity production, and on the future electricity demand. This paper focuses on the ongoing electrification process of the transport sector, with special attention devoted to road transport. A survey on the present and forthcoming technologies, as foreseen by several manufacturers and other models, and an international vehicle database are taken into account to develop the new road transport module, then implemented and harmonized inside ETM. Following three different storylines, the computed results are presented in terms of the evolution of the road transport demand in the next decades, fleet composition and CO 2 emissions. The ETM results are in line with many other studies. On one hand, they highlight, for the European road transport energy consumption pattern, the need for dramatic changes in the transport market, if the most ambitious environmental goals are to be pursued. On the other hand, the results also show that NFPP adoption on a commercial scale could be justified within the current projection of the investment costs, if the deep penetration of electricity in the road transport sector also occurs.


2020 ◽  
Vol 12 (21) ◽  
pp. 9152
Author(s):  
Reham Alhindawi ◽  
Yousef Abu Nahleh ◽  
Arun Kumar ◽  
Nirajan Shiwakoti

The economic and health impacts resulting from the greenhouse effect is a major concern in many countries. The transportation sector is one of the major contributors to greenhouse gas (GHG) emissions worldwide. Almost 15 percent of the global GHG and over 20 percent of energy-related CO2 emissions are produced by the transportation sector. Quantifying GHG emissions from the road transport sector assists in assessing the existing vehicles’ energy consumptions and in proposing technological interventions for enhancing vehicle efficiency and reducing energy-supply greenhouse gas intensity. This paper aims to develop a model for the projection of GHG emissions from the road transport sector. We consider the Vehicle-Kilometre by Mode (VKM) to Number of Transportation Vehicles (NTV) ratio for the six different modes of transportation. These modes include motorcycles, passenger cars, tractors, single-unit trucks, buses and light trucks data from the North American Transportation Statistics (NATS) online database over a period of 22 years. We use multivariate regression and double exponential approaches to model the projection of GHG emissions. The results indicate that the VKM to NTV ratio for the different transportation modes has a significant effect on GHG emissions, with the coefficient of determination adjusted R2 and R2 values of 89.46% and 91.8%, respectively. This shows that VKM and NTV are the main factors influencing GHG emission growth. The developed model is used to examine various scenarios for introducing plug-in hybrid electric vehicles and battery electric vehicles in the future. If there will be a switch to battery electric vehicles, a 62.2 % reduction in CO2 emissions would occur. The results of this paper will be useful in developing appropriate planning, policies, and strategies to reduce GHG emissions from the road transport sector.


2017 ◽  
Vol 9 (4) ◽  
pp. 538 ◽  
Author(s):  
Sang Jin Choi ◽  
Dong Gu Choi ◽  
Paul Friley ◽  
Hyunkeong Kim ◽  
Sang Yong Park

2008 ◽  
Vol 390 (1) ◽  
pp. 124-131 ◽  
Author(s):  
Anil Singh ◽  
S. Gangopadhyay ◽  
P.K. Nanda ◽  
S. Bhattacharya ◽  
C. Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document