scholarly journals Biomechanical comparison of a novel castless arthrodesis plate with T-plate and cross pin techniques for canine partial carpal arthrodesis

2013 ◽  
Vol 26 (03) ◽  
pp. 165-171 ◽  
Author(s):  
A. W. Miles ◽  
P. Pollintine ◽  
N. J. Burton

SummaryObjectives: To describe a novel canine castless partial carpal arthrodesis plate (par-CA) and its ex vivo biomechanical comparison with T-plate and cross pinning techniques for canine partial carpal arthrodesis.Methods: The three implant systems were applied to three cohorts of six forelimbs from Greyhounds euthanatized for reasons unrelated to the study. Intercarpal and carpometacarpal palmar fibrocartilage and ligaments were sectioned. Potentiometers were applied between the radial carpal and third metacarpal bones to measure micromotion, and limbs were loaded at 30% of bodyweight at 1 Hertz for 10,000 cycles on a servo-hydraulic universal testing machine. Following assessment of micromotion, limbs were loaded to failure at 20 mm/s and ultimate strength, ultimate displacement, and stiffness were measured.Results: The T-plate (p <0.01) and par-CA (p <0.01) had reduced micromotion relative to the cross pin constructs but there was no significant difference between the control, T-plate and par-CA constructs. There was no significant difference in ultimate strength between constructs. Ultimate displacement was reduced in the plated constructs. Stiffness did not differ between constructs.Clinical significance: The novel par-CA construct was biomechanically similar to the T-plate and both were superior to cross pins in resisting micromotion. There was no difference in load at failure between constructs. The par-CA plate permits radial and ulnar carpal bone compression, a more distal location of the plate to limit impingement, and placement of screws in two metacarpal bones; features which may offer clinical benefits over T-plate fixation.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Rachel M. Basa ◽  
Matthew J. Allen ◽  
Kenneth A. Johnson

Abstract Background Pancarpal arthrodesis is purported to limit supination and pronation of the feline antebrachium. The objective of this study was to investigate whether plate fixation of the radius to the carpus and metacarpus limits supination and pronation of the ulna relative to the radius as a model for pancarpal arthrodesis in the cat. Eight feline cadaveric forelimbs were rotated from supination to pronation in a testing jig and CT (computed tomography) was performed in the neutral, supinated and pronated positions. A locking plate was then secured dorsally to the radius, radial carpal bone and metacarpal III of each of the limbs. CT was repeated in each of the testing positions following plate application. The radius and ulna of the control specimens, and the radius, ulna and plate of the plated specimens were then segmented using software. Alignment of the bones to the radius in the control specimens, and to the plate in the plated specimens was used to compare the changes in degrees of movement of the ulna relative to the radius in dorsal, sagittal and transverse planes. Results Based on the results of the paired t test, there was no significant difference in degrees of movement, or total range of motion between control and plated specimens in supinated and pronated testing conditions. Conclusion The results of this ex-vivo study indicate that under the testing conditions employed, plate fixation of the radius to the carpus and metacarpus does not limit supination and pronation of the feline antebrachium.


2017 ◽  
Vol 34 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Stephanie Goldschmidt ◽  
Catherine Zimmerman ◽  
Caitlyn Collins ◽  
Scott Hetzel ◽  
Heidi-Lynn Ploeg ◽  
...  

Biomechanical studies of the elongated canine tooth of animals are few, and thus our understanding of mechanical and physical properties of animal teeth is limited. The objective of the present study was to evaluate the influence of force direction on fracture resistance and fracture pattern of canine teeth in an ex vivo dog cadaver model. Forty-five extracted canine teeth from laboratory beagle dogs were standardized by hard tissue volume and randomly distributed among 3 force direction groups. The teeth were secured within a universal testing machine and a load was applied at different directions based on testing group. The maximum force to fracture and the fracture pattern classification were recorded for each tooth. After correcting for hard tissue cross-sectional area in a multivariate analysis, no significant difference in the amount of force required for fracture was apparent between the different force direction groups. However, the influence of force direction on fracture pattern was significant. The results of this study may allow the clinician to educate clients on possible causal force directions in clinically fractured teeth and, thus, help prevent any contributing behavior in the future.


2019 ◽  
Vol 27 (3) ◽  
pp. 230949901988830
Author(s):  
Suriya Luenam ◽  
Poonsak Koonalinthip ◽  
Arkaphat Kosiyatrakul

Purpose: This study aims to assess the biomechanical performance of different tying techniques of a double-stranded looped suture (DSLS). Methods: Loop and knot security of DSLS tying techniques (nice knot (NK), modified nice knot (MNK), double-twist knot (DTK), and double-barrel knot (DBK)) were compared. The square knot of DSLS (SKD) and the square knot of single-stranded suture (SKS) had been used as references. Twenty-four loops of each configuration were created using No. 2 Fiberwire (Arthrex, Naples, Florida, USA) and tested with a material testing machine. Samples were loaded with 10 N preloads for loop security assessment. Knot security was subsequently evaluated. Twelve loops of each knot were loaded to failure. The rest were subjected to cyclic load testing and the elongation at the 50th and 1000th cycles were measured. Knot bulkiness was determined by measuring knot height before testing. Data were compared with analysis of variance and post hoc tests. Statistical significance was p < 0.05. Results: All knots showed no statistically significant difference in displacement with preload. The load-to-failure was highest in NK, followed by MNK, DTK, DBK, SKD, and SKS. The cyclic loading test at the 50th cycle and the 1000th cycle demonstrated that NK has significantly less displacement than the others except MNK. DTK provided a minimal average knot height followed by NK, SKS, DBK, MNK, and SKD. Conclusion: The different tying techniques in DSLS provided the similar loop security but different knot security and knot bulkiness. NK and MNK are biomechanically superior to the other knots, whereas DTK is the least bulky. The findings in the present study may help set the guide for the surgeons to select the tying technique of DSLS to best suit their requirement.


2021 ◽  
Vol 9 (D) ◽  
pp. 179-185
Author(s):  
Nouran Hussein ◽  
Dina A. El Refai ◽  
Ghada Atef Alian

Abstract AIM: The aim of this study was to compare the remineralization ability, ion release, microshear bond strength and wear resistance of a claimed bioactive restorative material (ACTIVA BioACTIVE Restorative, Pulpdent Corporation, Watertown, USA) with the conventional resin composite (​Filtek Z350 XT, 3M ESPE Elipar, Germany). MATERIALS AND METHODS: The remineralization ability was evaluated after 28 days using Energy Dispersive X-Ray (EDX) analysis. Ion release was investigated at three-time intervals: 1, 14 and 28 days. Calcium and phosphate ions release were determined by using ion chromatography system. Microshear bond strength was assessed using Universal Testing Machine. A wear test was conducted using a dual axis chewing simulator. RESULTS: ACTIVA™ was found to induce remineralization to the demineralized dentin. Results revealed that ACTIVA™ released Ca2+ and PO4-3 ions, whilst Filtek Z350 XT did not. Concerning microshear bond strength ACTIVA™ without adhesive application showed unacceptable failure. Regarding wear resistance there was no statistically significant difference between them. CONCLUSION: ACTIVA™ bioactive restorative material seems promising bioactive restorative materials. Clinical trials are recommended to compare clinical performance of ACTIVA™ with the other restorative materials.


Sign in / Sign up

Export Citation Format

Share Document