scholarly journals A Review on the Pollination of Aroids with Bisexual Flowers

2019 ◽  
Vol 104 (1) ◽  
pp. 83-104 ◽  
Author(s):  
Pedro Díaz Jiménez ◽  
Heiko Hentrich ◽  
Pedro Adrián Aguilar-Rodríguez ◽  
Thorsten Krömer ◽  
Marion Chartier ◽  
...  

This paper presents an exhaustive review of the current knowledge on pollination of Araceae genera with bisexual flowers. All available studies on floral morphology, flowering sequence, floral scent, floral thermogenesis, floral visitors, and pollinators were carefully examined, with emphasis on the species-rich genera Anthurium Schott, Monstera Adans., and Spathiphyllum Schott. Genera with bisexual flowers are among the early-diverging lineages in Araceae, but present adaptations in their floral ecology to a great variety of pollination vectors, such as bees, beetles, flies, and, unusually, wind. These clades have developed highly derived pollination systems, involving the use of floral scent as a reward. We conclude that floral scent chemistry plays a key role in the pollination biology of the plants and that, in some genera, reproductive isolation through variation in the emitted floral volatile compounds may have been the decisive factor in the speciation processes of sympatric species.

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 367-382 ◽  
Author(s):  
H D Bradshaw ◽  
Kevin G Otto ◽  
Barbara E Frewen ◽  
John K McKay ◽  
Douglas W Schemske

Abstract Conspicuous differences in floral morphology are partly responsible for reproductive isolation between two sympatric species of monkeyflower because of their effect on visitation of the flowers by different pollinators. Mimulus lewisii flowers are visited primarily by bumblebees, whereas M. cardinalis flowers are visited mostly by hummingbirds. The genetic control of 12 morphological differences between the flowers of M. lewisii and M. cardinalis was explored in a large linkage mapping population of F2 plants (n = 465) to provide an accurate estimate of the number and magnitude of effect of quantitative trait loci (QTLs) governing each character. Between one and six QTLs were identified for each trait. Most (9/12) traits appear to be controlled in part by at least one major QTL explaining ≥25% of the total phenotypic variance. This implies that either single genes of individually large effect or linked clusters of genes with a large cumulative effect can play a role in the evolution of reproductive isolation and speciation.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 785
Author(s):  
Muhammad Zeshan Aslam ◽  
Xiang Lin ◽  
Xiang Li ◽  
Nan Yang ◽  
Longqing Chen

Wintersweet (Chimonanthus praecox L.) is an ornamental and economically significant shrub known for its unique flowering characteristics, especially the emission of abundant floral volatile organic compounds. Thus, an understanding of the molecular mechanism of the production of these compounds is necessary to create new breeds with high volatile production. In this study, two bHLH transcription factors (CpMYC2 and CpbHLH13) of Wintersweet H29 were functionally characterized to illustrate their possible role in the production of volatile compounds. The qRT-PCR results showed that the expression of CpMYC2 and CpbHLH13 increased from the flower budding to full bloom stage, indicating that these two genes may play an essential role in blooming and aroma production in wintersweet. Gas chromatography-mass spectroscopy (GC-MS) analysis revealed that the overexpression of CpMYC2 in arabidopsis (Arabidopsis thaliana) AtMYC2-2 mutant (Salk_083483) and tobacco (Nicotiana tabaccum) genotype Petit Havana SR1 significantly increased floral volatile monoterpene, especially linalool, while the overexpression of CpbHLH13 in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and tobacco genotype SR1 increased floral sesquiterpene β-caryophyllene production in both types of transgenic plants respectively. High expression of terpene synthase (TPS) genes in transgenic A. thaliana along with high expression of CpMYC2 and CpbHLH13 in transgenic plants was also observed. The application of a combination of methyl jasmonic acid (MeJA) and gibberellic acid (GA3) showed an increment in linalool production in CpMYC2-overexpressing arabidopsis plants, and the high transcript level of TPS genes also suggested the involvement of CpMYC2 in the jasmonic acid (JA) signaling pathway. These results indicate that both the CpMYC2 and CpbHLH13 transcription factors of wintersweet are possibly involved in the positive regulation and biosynthesis of monoterpene (linalool) and sesquiterpene (β-caryophyllene) in transgenic plants. This study also indicates the potential application of wintersweet as a valuable genomic material for the genetic modification of floral scent in other flowering plants that produce less volatile compounds.


2021 ◽  
Vol 106 ◽  
pp. 372-391
Author(s):  
Ana Carolina Galindo da Costa ◽  
William Wayt Thomas ◽  
Artur Campos D. Maia ◽  
Daniela Maria do Amaral Ferraz Navarro ◽  
Paulo Milet-Pinheiro ◽  
...  

Floral colors and odors are evolutionary strategies used by plants to attract pollinating animals and may be absent in mostly anemophilous groups, such as Cyperaceae. However, considering that insects are floral visitors of some Rhynchospora Vahl species, the objective of this study was to characterize the floral traits and pollination systems within this genus. We analyzed 16 Rhynchospora species with regard to flower morphology, colors of floral structures, floral scents, pollen vectors, and pollination systems. We verified factors that can favor abiotic or biotic pollination in a continuum of floral traits in Rhynchospora. The flower morphology of R. dissitispicula T. Koyama, with inconspicuous brown spikelets in open panicles, is interpreted as a complete adaptation to anemophily. Conspicuous floral traits in Rhynchospora were distinguished from the background by bees. Some species also emit floral volatiles, and we made the first record of floral scent chemistry within the genus. Most of the compounds emitted by these species are known as attractants to many floral-visiting insects. Bees, beetles, and flies visited species with conspicuous floral traits and contributed to fruit set. The investigated floral traits form a continuum across the different pollination systems in Rhynchospora, from anemophilous to ambophilous and then to entomophilous representatives.


2020 ◽  
Author(s):  
Tetsuya K Matsumoto ◽  
Muneto Hirobe ◽  
Masahiro Sueyoshi ◽  
Yuko Miyazaki

Abstract Background and Aims Interspecific difference in pollinators (pollinator isolation) is important for reproductive isolation in flowering plants. Species-specific pollination by fungus gnats has been discovered in several plant taxa, suggesting that they can contribute to reproductive isolation. Nevertheless, their contribution has not been studied in detail, partly because they are too small for field observations during flower visitation. To quantify their flower visitation, we used the genus Arisaema (Araceae) because the pitcher-like spathe of Arisaema can trap all floral visitors. Methods We evaluated floral visitor assemblage in an altitudinal gradient including five Arisaema species. We also examined interspecific differences in altitudinal distribution (geographic isolation) and flowering phenology (phenological isolation). To exclude the effect of interspecific differences in altitudinal distribution on floral visitor assemblage, we established 10 experimental plots including the five Arisaema species on high- and low-altitude areas and collected floral visitors. We also collected floral visitors in three additional sites. Finally, we estimated the strength and contribution of these three reproductive barriers using the unified formula for reproductive isolation. Key Results Each Arisaema species selectively attracted different fungus gnats in the altitudinal gradient, experimental plots, and additional sites. Altitudinal distribution and flowering phenology differed among the five Arisaema species, whereas the strength of geographic and phenological isolations were distinctly weaker than those in pollinator isolation. Nevertheless, the absolute contribution of pollinator isolation to total reproductive isolation was weaker than geographic and phenological isolations, because pollinator isolation functions after the two early-acting barriers in plant life history. Conclusions Our results suggest that selective pollination by fungus gnats potentially contributes to reproductive isolation. Since geographic and phenological isolations can be disrupted by habitat disturbance and interannual climate change, the strong and stable pollinator isolation might compensate for the weakened early-acting barriers as an alternative reproductive isolation among the five Arisaema species.


2000 ◽  
Vol 132 (6) ◽  
pp. 877-887 ◽  
Author(s):  
B.S. Lindgren ◽  
S.E.R. Hoover ◽  
A.M. MacIsaac ◽  
C.I. Keeling ◽  
K.N. Slessor

AbstractThe effects of lineatin enantiomer ratios, lineatin release rate, and trap length on catches and the flight periods of three sympatric species of Trypodendron Stephens were investigated in field bioassays using multiple-funnel traps. The ambrosia beetle, Trypodendron betulae Swaine, was caught in similar numbers in baited traps and blank control traps, showing that this species does not respond to lineatin. Our results confirmed that Trypodendron lineatum (Olivier) is attracted only to (+)-lineatin. Trypodendron rufitarsus (Kirby) and Trypodendron retusum (LeConte) were shown to utilize lineatin and like T. lineatum were caught only when (+)-lineatin was present. These results indicate that lineatin does not govern reproductive isolation among these three species. There was no effect by (+)-lineatin release rate within the range tested. The flight of T. rufitarsus commenced earlier and ceased before the peak of the T. lineatum flight, suggesting that temporal separation may be an important component of reproductive isolation between these two species. The flight period of T. retusum was similar to that of T. lineatum. Host odours may aid in reproductive isolation of these two species. Enantiomer blend did not significantly affect sex ratio in any species; however, sex ratio differed among species, indicating that different species responded differently to the traps or that natural sex ratios differ. Catches of T. rufitarsus and T. retusum increased with trap length when pheromone release per trap was held constant and when release was held constant relative to trap length. Trap length and release rate did not affect sex ratio.


1994 ◽  
Vol 6 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Heather I. Daly ◽  
Paul G. Rodhouse

Morphometric data were collected for 410 specimens of Pareledone turqueti and P. polymorpha caught around South Georgia. The two species differ in beak morphology and in the male hectocotylus. The species have similar appearances although there is a small but significant difference in the mantle length/body mass relationship for females, with P. polymorpha having a relatively longer mantle. There is no significant difference in the arm length/body mass relationship between species or sexes (p>0.05), except in the case of arm IV of females. There is an interspecific significant difference between sucker number on arms I and II of males, arms I–IV of females, and between hood length and mass of the buccal mass (p<0.05), with P. turqueti having relatively lower sucker numbers, a longer hood length and greater buccal mass mass. The beak of P. turqueti is similar to that of Eledone spp. but P. polymorpha has a small, fine beak with the rostral tip ending in an elongated, sharp point. Differences in beak and buccal mass suggest that these sympatric species occupy distinct trophic niches and that the differing morphology of the male hectocotylus is a factor in reproductive isolation.


2005 ◽  
Vol 53 (2) ◽  
pp. 147 ◽  
Author(s):  
Greg Guerin

The floral morphology and pollination of Hemigenia R.Br. and Microcorys R.Br. (Lamiaceae) were examined in the field and laboratory. The protandrous flowers have tubular, two-lipped corollas. Nine floral morphotypes are described. The stamens may be completely sterile (staminodal) or have one theca reduced or absent. The anthers typically have elongated connective tissue and are mobile on the filament. When the lower end of the anther is pushed, the upper end is levered towards the mouth of the corolla tube, hence dusting the pollinator precisely where receptive stigmas will later touch. Bearding on the anthers of the adaxial stamens catches adjacent anthers so that they lever in unison. Staminodes guide insect pollinators into the throat to allow precise pollen dusting. Detailed field observations show that bees and flies are the principle pollinators of most species. Floral morphologies are related to pollinator castes, and reproductive isolation and efficiency is enhanced by precise pollen deposition. Bird pollination is likely to have arisen independently in several taxa. The floral arrangement of these taxa is superficially similar but the syndrome is achieved through different anatomy.


Evolution ◽  
1979 ◽  
Vol 33 (2) ◽  
pp. 728 ◽  
Author(s):  
Michael M. Collins ◽  
Paul M. Tuskes

2019 ◽  
Vol 67 (7) ◽  
pp. 490 ◽  
Author(s):  
Noushka Reiter ◽  
Björn Bohman ◽  
Marc Freestone ◽  
Graham R. Brown ◽  
Ryan D. Phillips

Prior to undertaking conservation translocations of plants with specialised pollination systems, it is important to ensure the presence of pollinators at recipient sites. Here, for two threatened species, Caladenia concolor Fitzg. and Caladenia arenaria Fitzg. (Orchidaceae), we determine (i) the pollination strategy used, (ii) which floral visitors are involved in pollination, and (iii) whether the pollinator species are present at potential translocation sites. For both orchid species, pollination was primarily achieved by nectar-foraging thynnine wasps, with a single species responsible for pollination in C. concolor, whereas C. arenaria utilised at least two species to achieve pollination. Both orchid species secreted meagre quantities of sucrose on the upper surface of the labellum. Visits to C. concolor occurred primarily in the late afternoon, with some wasps perching on the flowers overnight. Surveys revealed that pollinators were present at all extant populations and most potential translocation sites for both orchids. The specialisation on one pollinator species in C. concolor means that the distribution of the pollinator needs to be considered for conservation translocations. With C. arenaria, the risk of hybridisation with other Caladenia that are known to share one of its pollinator species needs to be taken into account when selecting translocation sites.


Plant Biology ◽  
2017 ◽  
Vol 19 (4) ◽  
pp. 515-524 ◽  
Author(s):  
B. Guzmán ◽  
J. M. Gómez ◽  
P. Vargas

Sign in / Sign up

Export Citation Format

Share Document